作者
Zhongchen Ma,Tianhao Sun,Xinyu Bai,Xiang Ji,Qian Zhang,Jiangdong Wu,Zhen Wang,Chuangfu Chen
摘要
Introduction In recent years, drug-resistant Mycobacterium tuberculosis strains have gradually become widespread. Most drug resistance is related to specific mutations. We investigated M. tuberculosis drug resistance in the Kashgar area, China. Methods The drug-susceptibility test was conducted to clinical isolates of M. tuberculosis. Genomic-sequencing technology was used for the drug-resistant strains and the significance of DNA sequencing as a rapid aid for drug-resistance detection and the diagnosis method was evaluated. Results The resistance rates of clinical isolates to rifampicin (RFP), isoniazid (INH), streptomycin (SM), ethambutol (EMB), and ofloxacin (OFX) were, respectively, 4.4%, 12.3%, 8.8%, 2.6%, and 3.5%. The single- and multi-drug resistance rates were, respectively, 80.0% and 20.0%. The resistance genes RopB, katG, InhA, RpsL, rrs, gyrA, and embB displayed codon mutations, while InhA was mutated in its promoter region. Kappa scores, evaluating the consistency between DNA sequencing and the resistance ratio methods for the detection of isolates’ resistance to RFP, INH, SM, OFX, and EMB, were 1, 0.955, 0.721, 0.796, and 1, respectively. Conclusion The resistance rate of INH and SM is relatively high in the Kashgar area. Detection of mutations in RopB, katG, InhA, RpsL, rrs, gyrA, and embB by DNA sequencing can predict drug resistance of M. tuberculosis strains with high sensitivity and specificity, and can be used for diagnosis.