已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge tensor embedding framework with association enhancement for breast ultrasound diagnosis of limited labeled samples

嵌入 计算机科学 人工智能 乳腺超声检查 乳房成像 乳腺癌 模式识别(心理学) 机器学习 数据挖掘 医学 乳腺摄影术 癌症 内科学
作者
Jianing Xi,Zhaoji Miao,Longzhong Liu,Xuebing Yang,Wensheng Zhang,Qinghua Huang,Xuelong Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:468: 60-70 被引量:26
标识
DOI:10.1016/j.neucom.2021.10.013
摘要

In the AI diagnosis of breast cancer, instead of ultrasound images from non-standard acquisition process, the Breast Image Reporting and Data System (BI-RADS) reports are widely accepted as the input data since it can give standardized descriptions for the breast ultrasound samples. The BI-RADS reports are usually stored as the format of Knowledge Graph (KG) due to the flexibility, and the KG embedding is a common procedure for the AI analysis on BI-RADS data. However, since most existing embedding methods are based on the local connections in KG, in the situation of limited labeled samples, there is a clear need for embedding based diagnosis method which is capable of representing the global interactions among all entities/relations and associating the labeled/unlabeled samples. To diagnose the breast ultrasound samples with limited labels, in this paper we propose an efficient framework Knowledge Tensor Embedding with Association Enhancement Diagnosis (KTEAED), which adopts tensor decomposition into the embedding to achieve the global representation of KG entities/relations, and introduces the association enhancement strategy to prompt the similarities between embeddings of labeled/unlabeled samples. The embedding vectors are then utilized to diagnose the clinical outcomes of samples by predicting their links to outcomes entities. Through extensive experiments on BI-RADS data with different fractions of labels and ablation studies, our KTEAED displays promising performance in the situations of various fractions of labels. In summary, our framework demonstrates a clear advantage of tackling limited labeled samples of BI-RADS reports in the breast ultrasound diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋刀鱼不过期完成签到 ,获得积分10
刚刚
刚刚
1秒前
3秒前
轻舟发布了新的文献求助10
4秒前
Hello应助Corn_Dog采纳,获得10
12秒前
Amy完成签到,获得积分10
17秒前
18秒前
平淡的雁开完成签到 ,获得积分10
18秒前
8531发布了新的文献求助10
24秒前
Corn_Dog发布了新的文献求助10
24秒前
田様应助su采纳,获得10
25秒前
万能图书馆应助吾月采纳,获得10
29秒前
热情安卉发布了新的文献求助10
30秒前
善学以致用应助杨颖采纳,获得10
31秒前
31秒前
32秒前
科研小白完成签到 ,获得积分10
33秒前
LJQ完成签到,获得积分20
33秒前
长安完成签到 ,获得积分10
35秒前
Mankind发布了新的文献求助10
35秒前
38秒前
39秒前
39秒前
量子星尘发布了新的文献求助10
40秒前
小蘑菇应助8531采纳,获得10
41秒前
轻舟发布了新的文献求助10
42秒前
44秒前
仙人发布了新的文献求助30
44秒前
杨颖发布了新的文献求助10
45秒前
李爱国应助忧郁凡霜采纳,获得10
45秒前
45秒前
Joker完成签到,获得积分10
46秒前
Ava应助善良语雪采纳,获得10
47秒前
文献看了吗完成签到,获得积分10
55秒前
56秒前
57秒前
光亮雁玉完成签到 ,获得积分10
59秒前
善良语雪发布了新的文献求助10
1分钟前
mengyanchao完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024