嵌入
计算机科学
人工智能
乳腺超声检查
乳房成像
乳腺癌
模式识别(心理学)
机器学习
数据挖掘
医学
乳腺摄影术
癌症
内科学
作者
Jianing Xi,Zhaoji Miao,Longzhong Liu,Xuebing Yang,Wensheng Zhang,Qinghua Huang,Xuelong Li
标识
DOI:10.1016/j.neucom.2021.10.013
摘要
In the AI diagnosis of breast cancer, instead of ultrasound images from non-standard acquisition process, the Breast Image Reporting and Data System (BI-RADS) reports are widely accepted as the input data since it can give standardized descriptions for the breast ultrasound samples. The BI-RADS reports are usually stored as the format of Knowledge Graph (KG) due to the flexibility, and the KG embedding is a common procedure for the AI analysis on BI-RADS data. However, since most existing embedding methods are based on the local connections in KG, in the situation of limited labeled samples, there is a clear need for embedding based diagnosis method which is capable of representing the global interactions among all entities/relations and associating the labeled/unlabeled samples. To diagnose the breast ultrasound samples with limited labels, in this paper we propose an efficient framework Knowledge Tensor Embedding with Association Enhancement Diagnosis (KTEAED), which adopts tensor decomposition into the embedding to achieve the global representation of KG entities/relations, and introduces the association enhancement strategy to prompt the similarities between embeddings of labeled/unlabeled samples. The embedding vectors are then utilized to diagnose the clinical outcomes of samples by predicting their links to outcomes entities. Through extensive experiments on BI-RADS data with different fractions of labels and ablation studies, our KTEAED displays promising performance in the situations of various fractions of labels. In summary, our framework demonstrates a clear advantage of tackling limited labeled samples of BI-RADS reports in the breast ultrasound diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI