已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge tensor embedding framework with association enhancement for breast ultrasound diagnosis of limited labeled samples

嵌入 计算机科学 人工智能 乳腺超声检查 乳房成像 乳腺癌 模式识别(心理学) 机器学习 数据挖掘 医学 乳腺摄影术 癌症 内科学
作者
Jianing Xi,Zhaoji Miao,Longzhong Liu,Xuebing Yang,Wensheng Zhang,Qinghua Huang,Xuelong Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:468: 60-70 被引量:26
标识
DOI:10.1016/j.neucom.2021.10.013
摘要

In the AI diagnosis of breast cancer, instead of ultrasound images from non-standard acquisition process, the Breast Image Reporting and Data System (BI-RADS) reports are widely accepted as the input data since it can give standardized descriptions for the breast ultrasound samples. The BI-RADS reports are usually stored as the format of Knowledge Graph (KG) due to the flexibility, and the KG embedding is a common procedure for the AI analysis on BI-RADS data. However, since most existing embedding methods are based on the local connections in KG, in the situation of limited labeled samples, there is a clear need for embedding based diagnosis method which is capable of representing the global interactions among all entities/relations and associating the labeled/unlabeled samples. To diagnose the breast ultrasound samples with limited labels, in this paper we propose an efficient framework Knowledge Tensor Embedding with Association Enhancement Diagnosis (KTEAED), which adopts tensor decomposition into the embedding to achieve the global representation of KG entities/relations, and introduces the association enhancement strategy to prompt the similarities between embeddings of labeled/unlabeled samples. The embedding vectors are then utilized to diagnose the clinical outcomes of samples by predicting their links to outcomes entities. Through extensive experiments on BI-RADS data with different fractions of labels and ablation studies, our KTEAED displays promising performance in the situations of various fractions of labels. In summary, our framework demonstrates a clear advantage of tackling limited labeled samples of BI-RADS reports in the breast ultrasound diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tulips完成签到 ,获得积分10
2秒前
2秒前
12123浪发布了新的文献求助10
3秒前
榴莲姑娘完成签到 ,获得积分10
4秒前
我想毕业完成签到 ,获得积分20
6秒前
8秒前
大个应助kgGgNND5采纳,获得30
9秒前
11秒前
科研小白完成签到 ,获得积分10
13秒前
善学以致用应助俏皮短靴采纳,获得10
13秒前
单身的傲玉完成签到 ,获得积分10
13秒前
音殿发布了新的文献求助10
14秒前
细心夏瑶完成签到,获得积分10
15秒前
lsc完成签到 ,获得积分10
15秒前
18秒前
kgGgNND5完成签到,获得积分20
19秒前
22秒前
22秒前
kgGgNND5发布了新的文献求助30
25秒前
27秒前
28秒前
28秒前
橙子是不是完成签到 ,获得积分10
29秒前
30秒前
30秒前
hush发布了新的文献求助10
31秒前
32秒前
ning发布了新的文献求助10
33秒前
光亮鞋子发布了新的文献求助10
34秒前
35秒前
无尘完成签到 ,获得积分10
36秒前
Jasper应助hush采纳,获得10
37秒前
鲁西西发布了新的文献求助10
38秒前
ning完成签到,获得积分10
39秒前
39秒前
希音完成签到 ,获得积分10
40秒前
40秒前
柯轲珂完成签到,获得积分10
42秒前
43秒前
深情安青应助ning采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130