Knowledge tensor embedding framework with association enhancement for breast ultrasound diagnosis of limited labeled samples

嵌入 计算机科学 人工智能 乳腺超声检查 乳房成像 乳腺癌 模式识别(心理学) 机器学习 数据挖掘 医学 乳腺摄影术 癌症 内科学
作者
Jianing Xi,Zhaoji Miao,Longzhong Liu,Xuebing Yang,Wensheng Zhang,Qinghua Huang,Xuelong Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:468: 60-70 被引量:26
标识
DOI:10.1016/j.neucom.2021.10.013
摘要

In the AI diagnosis of breast cancer, instead of ultrasound images from non-standard acquisition process, the Breast Image Reporting and Data System (BI-RADS) reports are widely accepted as the input data since it can give standardized descriptions for the breast ultrasound samples. The BI-RADS reports are usually stored as the format of Knowledge Graph (KG) due to the flexibility, and the KG embedding is a common procedure for the AI analysis on BI-RADS data. However, since most existing embedding methods are based on the local connections in KG, in the situation of limited labeled samples, there is a clear need for embedding based diagnosis method which is capable of representing the global interactions among all entities/relations and associating the labeled/unlabeled samples. To diagnose the breast ultrasound samples with limited labels, in this paper we propose an efficient framework Knowledge Tensor Embedding with Association Enhancement Diagnosis (KTEAED), which adopts tensor decomposition into the embedding to achieve the global representation of KG entities/relations, and introduces the association enhancement strategy to prompt the similarities between embeddings of labeled/unlabeled samples. The embedding vectors are then utilized to diagnose the clinical outcomes of samples by predicting their links to outcomes entities. Through extensive experiments on BI-RADS data with different fractions of labels and ablation studies, our KTEAED displays promising performance in the situations of various fractions of labels. In summary, our framework demonstrates a clear advantage of tackling limited labeled samples of BI-RADS reports in the breast ultrasound diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
赘婿应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
hush发布了新的文献求助10
1秒前
sc发布了新的文献求助10
1秒前
1秒前
Yyxy发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
平常语山完成签到,获得积分10
3秒前
4秒前
爱撒娇的刺猬完成签到,获得积分10
4秒前
传奇3应助wecool采纳,获得10
5秒前
5秒前
耍酷芙蓉完成签到 ,获得积分10
5秒前
医痞子发布了新的文献求助10
6秒前
sansan完成签到,获得积分10
6秒前
8秒前
8秒前
天天快乐应助姜惠采纳,获得10
8秒前
hush完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
orixero应助Jing采纳,获得10
11秒前
投石问路完成签到,获得积分10
14秒前
14秒前
美好芷波发布了新的文献求助10
14秒前
道元完成签到,获得积分10
14秒前
yyyrrr完成签到,获得积分10
14秒前
CC发布了新的文献求助10
15秒前
小诗发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434254
求助须知:如何正确求助?哪些是违规求助? 4546529
关于积分的说明 14202959
捐赠科研通 4466464
什么是DOI,文献DOI怎么找? 2448165
邀请新用户注册赠送积分活动 1439046
关于科研通互助平台的介绍 1415945