Cross-species cell-type assignment of single-cell RNA-seq by a heterogeneous graph neural network

生物 基因 计算生物学 电池类型 同源染色体 遗传学 细胞 稳健性(进化)
作者
Xingyan Liu,Qunlun Shen,Shihua Zhang
标识
DOI:10.1101/2021.09.25.461790
摘要

Abstract Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell resolution, the origins of cellular diversity and the evolutionary mechanisms that shape cellular form and function. Here, we aimed to utilize a heterogeneous graph neural network to learn aligned and interpretable cell and gene embeddings for cross-species c ell type a ssignment and gene m odule e xtraction (CAME) from scRNA-seq data. A systematic evaluation study on 649 pairs of cross-species datasets showed that CAME outperformed six benchmarking methods in terms of cell-type assignment and model robustness to insufficiency and inconsistency of sequencing depths. Comparative analyses of the major types of human and mouse brains by CAME revealed shared cell type-specific functions in homologous gene modules. Alignment of the trajectories of human and macaque spermatogenesis by CAME revealed conservative gene expression dynamics during spermatogenesis between humans and macaques. Owing to the utilization of non-one-to-one homologous gene mappings, CAME made a significant improvement on cell-type characterization cross zebrafish and other species. Overall, CAME can not only make an effective cross-species assignment of cell types on scRNA-seq data but also reveal evolutionary conservative and divergent features between species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助zzzwederfrft采纳,获得10
1秒前
1秒前
小达完成签到,获得积分10
3秒前
Cactus应助北辰一刀流采纳,获得10
3秒前
小芳儿完成签到 ,获得积分10
5秒前
飘逸宛丝完成签到,获得积分10
6秒前
万能图书馆应助andyson666采纳,获得10
7秒前
ahan发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
SYLH应助糯米糍采纳,获得10
10秒前
Owen应助糯米糍采纳,获得10
10秒前
乐乐应助糯米糍采纳,获得10
10秒前
丘比特应助糯米糍采纳,获得10
10秒前
Jasper应助糯米糍采纳,获得10
10秒前
斯文败类应助糯米糍采纳,获得10
10秒前
情怀应助糯米糍采纳,获得10
10秒前
小二郎应助糯米糍采纳,获得10
10秒前
慕青应助糯米糍采纳,获得10
10秒前
赘婿应助糯米糍采纳,获得10
10秒前
Bosen完成签到,获得积分10
10秒前
nebula应助任大师兄采纳,获得10
10秒前
zzzwederfrft完成签到,获得积分10
10秒前
11秒前
999999完成签到,获得积分20
12秒前
xiaoyang完成签到,获得积分10
12秒前
grc完成签到,获得积分10
13秒前
大鹏发布了新的文献求助10
13秒前
13秒前
zzzwederfrft发布了新的文献求助10
14秒前
没有答案发布了新的文献求助10
14秒前
张叶卓发布了新的文献求助10
15秒前
16秒前
赘婿应助兴奋千兰采纳,获得10
16秒前
优雅的半梅完成签到 ,获得积分10
16秒前
19秒前
19秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782