生物传感器
生物分子
检出限
材料科学
生物污染
纳米颗粒
胶体金
组合化学
纳米技术
亚甲蓝
电化学
纳米材料
电极
化学
色谱法
膜
有机化学
催化作用
生物化学
光催化
物理化学
作者
Yan Xu,Xinyan Wang,Caifeng Ding,Xiliang Luo
标识
DOI:10.1021/acsami.1c04933
摘要
A universal strategy for the construction of ratiometric antifouling electrochemical biosensors was developed based on multifunctional peptides and 2D nanomaterial MXene loaded with gold nanoparticles (AuNPs) and methylene blue (MB). The nanocomposite of MXene loaded with AuNPs and MB (MXene-Au-MB) exhibited excellent conductivity, where the AuNPs were able to capture biomolecules containing sulfhydryl terminus, and the MB molecules were used to generate electrochemical signal. The MXene-Au-MB was fixed on the electrode surface by Nafion, and the anchored peptide captured the electrochemical signal probe carboxyl-modified ferrocene (Fc) to construct an electrochemical biosensor. The multifunctional peptide containing the anchoring, antifouling, and recognizing sequences endowed the sensing surface not only the assaying function but also the capability to resist nonspecific adsorption from complex samples. In the biosensing system, with the increase in the target concentration, the electrochemical signal of MB remained constant, whereas the electrochemical signal of Fc gradually decreased, and the ratiometric detection strategy greatly improved the accuracy of the biosensor. In the presence of a model target prostate-specific antigen (PSA), the recognizing sequence was recognized and cleaved, and the ratiometric signal of Fc and MB indicated the concentration of PSA accurately and sensitively, with a detection range from 5 pg/mL to 10 ng/mL and a limit of detection of 0.83 pg/mL. Electrochemical biosensors based on the MXene-Au-MB and multifunctional peptides possessed high selectivity, accuracy, and sensitivity even in real complex biological samples because of the excellent antifouling ability of the peptide. More importantly, the assaying of other targets can be easily realized with a similar biosensing strategy by changing the recognition sequence of the multifunctional peptide, and the detection of thrombin (TB) has also been achieved in this work.
科研通智能强力驱动
Strongly Powered by AbleSci AI