Unity and diversity of neural representation in executive functions.

功能专门化 代表(政治) 功能磁共振成像 心理学 认知心理学 意识的神经相关物 认知 神经科学 计算机科学 人工智能 模式识别(心理学) 政治学 政治 法学
作者
Li He,Kaixiang Zhuang,Qunlin Chen,Dongtao Wei,Xiaoyi Chen,Jin Fan,Jiang Qiu
出处
期刊:Journal of Experimental Psychology: General 卷期号:150 (11): 2193-2207 被引量:17
标识
DOI:10.1037/xge0001047
摘要

Although the unity and diversity model of executive functions (EFs) has been replicated, there are some studies questioning the validity of the EFs construct. This debate can be partially resolved by directly combining the brain activity pattern in different executive control processes. Previous univariate activation studies have suggested that the neural substrates of different EFs (e.g., updating, inhibiting, and shifting) involve common and distinct brain regions. However, the underlying multivariate neural representation of EFs in terms of unity and diversity is still elusive. Here, we employed the n-back task, stop signal task, and category switching task to investigate the characteristic of the neural representation in the three EF domains. At the global level, multivoxel pattern analysis revealed that a three-way classifier built with global activation pattern successfully distinguished the three EF tasks. At the local level, although most overlapping activations exhibit lower neural representational similarity, the inferior frontal junction showed similar neural representation across the three EFs, which was further confirmed by searchlight analysis that additionally revealed other similar representational regions were located in the presupplementary motor area extend to dorsal midcingulate cortex. In addition, using machine learning-based predictive framework, the resting-state functional networks built with the representational regions of EFs predicted intellectual abilities to some extent in a large independent sample. These findings suggest that different EFs are characterized by dissociable global neural representation but also share similar local neural representation, which contributes to understanding the neural correlates of the unity and diversity of EFs from an integrated framework. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
糖糖完成签到,获得积分20
2秒前
哇塞啊发布了新的文献求助10
2秒前
要减肥的歌曲完成签到,获得积分20
2秒前
2秒前
Watson完成签到,获得积分10
2秒前
Agu完成签到,获得积分10
3秒前
orixero应助balabala采纳,获得10
3秒前
X1完成签到,获得积分10
4秒前
SunOSun完成签到 ,获得积分10
4秒前
Cody完成签到,获得积分10
6秒前
aaa发布了新的文献求助10
6秒前
小白完成签到,获得积分10
7秒前
未来发布了新的文献求助10
7秒前
8秒前
调皮的巧凡完成签到,获得积分10
8秒前
吕志才发布了新的文献求助10
9秒前
9秒前
在水一方应助jj采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
jo完成签到,获得积分10
11秒前
11秒前
tengfei发布了新的文献求助10
12秒前
13秒前
14秒前
小夜子完成签到 ,获得积分10
14秒前
Herman完成签到 ,获得积分10
14秒前
Wdw2236发布了新的文献求助10
15秒前
夏xia完成签到 ,获得积分10
15秒前
鸡狗不如完成签到,获得积分20
15秒前
yuyu发布了新的文献求助10
16秒前
Lucky发布了新的文献求助10
17秒前
Akim应助0109采纳,获得10
17秒前
yoonkk完成签到,获得积分10
18秒前
共享精神应助如云之悠采纳,获得10
18秒前
充电宝应助刘豆豆采纳,获得10
18秒前
敏感的铃铛完成签到,获得积分10
19秒前
19秒前
Akim应助bowang采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333