Unity and diversity of neural representation in executive functions.

功能专门化 代表(政治) 功能磁共振成像 心理学 认知心理学 意识的神经相关物 认知 神经科学 计算机科学 人工智能 模式识别(心理学) 政治学 政治 法学
作者
Li He,Kaixiang Zhuang,Qunlin Chen,Dongtao Wei,Xiaoyi Chen,Jin Fan,Jiang Qiu
出处
期刊:Journal of Experimental Psychology: General 卷期号:150 (11): 2193-2207 被引量:16
标识
DOI:10.1037/xge0001047
摘要

Although the unity and diversity model of executive functions (EFs) has been replicated, there are some studies questioning the validity of the EFs construct. This debate can be partially resolved by directly combining the brain activity pattern in different executive control processes. Previous univariate activation studies have suggested that the neural substrates of different EFs (e.g., updating, inhibiting, and shifting) involve common and distinct brain regions. However, the underlying multivariate neural representation of EFs in terms of unity and diversity is still elusive. Here, we employed the n-back task, stop signal task, and category switching task to investigate the characteristic of the neural representation in the three EF domains. At the global level, multivoxel pattern analysis revealed that a three-way classifier built with global activation pattern successfully distinguished the three EF tasks. At the local level, although most overlapping activations exhibit lower neural representational similarity, the inferior frontal junction showed similar neural representation across the three EFs, which was further confirmed by searchlight analysis that additionally revealed other similar representational regions were located in the presupplementary motor area extend to dorsal midcingulate cortex. In addition, using machine learning-based predictive framework, the resting-state functional networks built with the representational regions of EFs predicted intellectual abilities to some extent in a large independent sample. These findings suggest that different EFs are characterized by dissociable global neural representation but also share similar local neural representation, which contributes to understanding the neural correlates of the unity and diversity of EFs from an integrated framework. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凯少完成签到 ,获得积分10
1秒前
研友_LwbBo8完成签到,获得积分10
1秒前
ddly完成签到,获得积分10
1秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
2秒前
小马甲应助大胆剑封采纳,获得10
4秒前
理想发布了新的文献求助10
6秒前
6秒前
WZH完成签到,获得积分10
6秒前
Akim应助哇哇哇采纳,获得10
7秒前
Lee完成签到,获得积分10
7秒前
7秒前
8秒前
坚定的又莲完成签到 ,获得积分10
9秒前
枫无痕完成签到,获得积分10
9秒前
Faded完成签到 ,获得积分10
10秒前
sh完成签到,获得积分10
10秒前
害羞便当发布了新的文献求助10
11秒前
开朗煎饼完成签到 ,获得积分10
11秒前
FashionBoy应助理想采纳,获得10
11秒前
221156完成签到,获得积分10
11秒前
12秒前
凛尘发布了新的文献求助10
12秒前
女兆发布了新的文献求助10
13秒前
动人的笑南完成签到,获得积分10
13秒前
简单完成签到 ,获得积分10
13秒前
14秒前
14秒前
胡杨柳发布了新的文献求助10
14秒前
孤寞完成签到,获得积分10
15秒前
去有风的地方完成签到,获得积分10
15秒前
16秒前
啊大大哇完成签到,获得积分10
16秒前
16秒前
一切皆有利于我完成签到,获得积分10
17秒前
Thing完成签到,获得积分10
18秒前
guantlv发布了新的文献求助10
18秒前
koi完成签到,获得积分10
19秒前
666发布了新的文献求助10
19秒前
现代雁桃完成签到,获得积分10
19秒前
缓慢手机完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554