Unity and diversity of neural representation in executive functions.

功能专门化 代表(政治) 功能磁共振成像 心理学 认知心理学 意识的神经相关物 认知 神经科学 计算机科学 人工智能 模式识别(心理学) 政治学 政治 法学
作者
Li He,Kaixiang Zhuang,Qunlin Chen,Dongtao Wei,Xiaoyi Chen,Jin Fan,Jiang Qiu
出处
期刊:Journal of Experimental Psychology: General 卷期号:150 (11): 2193-2207 被引量:16
标识
DOI:10.1037/xge0001047
摘要

Although the unity and diversity model of executive functions (EFs) has been replicated, there are some studies questioning the validity of the EFs construct. This debate can be partially resolved by directly combining the brain activity pattern in different executive control processes. Previous univariate activation studies have suggested that the neural substrates of different EFs (e.g., updating, inhibiting, and shifting) involve common and distinct brain regions. However, the underlying multivariate neural representation of EFs in terms of unity and diversity is still elusive. Here, we employed the n-back task, stop signal task, and category switching task to investigate the characteristic of the neural representation in the three EF domains. At the global level, multivoxel pattern analysis revealed that a three-way classifier built with global activation pattern successfully distinguished the three EF tasks. At the local level, although most overlapping activations exhibit lower neural representational similarity, the inferior frontal junction showed similar neural representation across the three EFs, which was further confirmed by searchlight analysis that additionally revealed other similar representational regions were located in the presupplementary motor area extend to dorsal midcingulate cortex. In addition, using machine learning-based predictive framework, the resting-state functional networks built with the representational regions of EFs predicted intellectual abilities to some extent in a large independent sample. These findings suggest that different EFs are characterized by dissociable global neural representation but also share similar local neural representation, which contributes to understanding the neural correlates of the unity and diversity of EFs from an integrated framework. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Sam十九采纳,获得10
刚刚
刚刚
小马甲应助莫愁采纳,获得10
1秒前
小夏发布了新的文献求助10
1秒前
眯眯眼的忆山完成签到,获得积分10
3秒前
daliu完成签到,获得积分0
4秒前
4秒前
LIJIngcan发布了新的文献求助10
5秒前
小虫虫完成签到,获得积分10
5秒前
5秒前
丘比特应助ZiyinChen采纳,获得10
5秒前
机灵的海莲关注了科研通微信公众号
6秒前
7秒前
大个应助dudu采纳,获得30
7秒前
量子星尘发布了新的文献求助150
8秒前
8秒前
WoeL.Aug.11完成签到 ,获得积分10
10秒前
源缘发布了新的文献求助10
10秒前
10秒前
Hmzek发布了新的文献求助10
10秒前
LIJIngcan完成签到,获得积分10
12秒前
12秒前
aaaa完成签到,获得积分10
13秒前
香蕉觅云应助peace采纳,获得10
14秒前
今后应助ljf采纳,获得10
14秒前
14秒前
Yanki完成签到,获得积分10
14秒前
14秒前
淡淡山兰完成签到,获得积分10
15秒前
苏锦霖发布了新的文献求助10
15秒前
15秒前
科研通AI5应助奶桃七七采纳,获得10
15秒前
科研通AI5应助奶桃七七采纳,获得10
15秒前
orixero应助奶桃七七采纳,获得10
16秒前
16秒前
科研通AI6应助奶桃七七采纳,获得10
16秒前
科研通AI6应助奶桃七七采纳,获得10
16秒前
科研新牛马应助奶桃七七采纳,获得10
16秒前
科研通AI6应助奶桃七七采纳,获得10
16秒前
科研通AI6应助奶桃七七采纳,获得10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447