Whole-tumor 3D volumetric MRI-based radiomics approach for distinguishing between benign and malignant soft tissue tumors

无线电技术 医学 神经组阅片室 阿达布思 随机森林 单变量 放射科 磁共振成像 单变量分析 人工智能 Boosting(机器学习) 机器学习 接收机工作特性 软组织 支持向量机 多元分析 计算机科学 多元统计 内科学 精神科 神经学
作者
Brandon K.K. Fields,Natalie L. Demirjian,Darryl Hwang,Bino Varghese,Steven Cen,Xiaomeng Lei,Bhushan Desai,Vinay Duddalwar,George R. Matcuk
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (11): 8522-8535 被引量:32
标识
DOI:10.1007/s00330-021-07914-w
摘要

Our purpose was to differentiate between malignant from benign soft tissue neoplasms using a combination of MRI-based radiomics metrics and machine learning. Our retrospective study identified 128 histologically diagnosed benign (n = 36) and malignant (n = 92) soft tissue lesions. 3D ROIs were manually drawn on 1 sequence of interest and co-registered to other sequences obtained during the same study. One thousand seven hundred eight radiomics features were extracted from each ROI. Univariate analyses with supportive ROC analyses were conducted to evaluate the discriminative power of predictive models constructed using Real Adaptive Boosting (Adaboost) and Random Forest (RF) machine learning approaches. Univariate analyses demonstrated that 36.89% of individual radiomics varied significantly between benign and malignant lesions at the p ≤ 0.05 level. Adaboost and RF performed similarly well, with AUCs of 0.77 (95% CI 0.68–0.85) and 0.72 (95% CI 0.63–0.81), respectively, after 10-fold cross-validation. Restricting the machine learning models to only sequences extracted from T2FS and STIR sequences maintained comparable performance, with AUCs of 0.73 (95% CI 0.64–0.82) and 0.75 (95% CI 0.65–0.84), respectively. Machine learning decision classifiers constructed from MRI-based radiomics features show promising ability to preoperatively discriminate between benign and malignant soft tissue masses. Our approach maintains applicability even when the dataset is restricted to T2FS and STIR fluid-sensitive sequences, which may bolster practicality in clinical application scenarios by eliminating the need for complex co-registrations for multisequence analysis. • Predictive models constructed from MRI-based radiomics data and machine learning–augmented approaches yielded good discriminative power to correctly classify benign and malignant lesions on preoperative scans, with AUCs of 0.77 (95% CI 0.68–0.85) and 0.72 (95% CI 0.63–0.81) for Real Adaptive Boosting (Adaboost) and Random Forest (RF), respectively. • Restricting the models to only use metrics extracted from T2 fat-saturated (T2FS) and Short-Tau Inversion Recovery (STIR) sequences yielded similar performance, with AUCs of 0.73 (95% CI 0.64–0.82) and 0.75 (95% CI 0.65–0.84) for Adaboost and RF, respectively. • Radiomics-based machine learning decision classifiers constructed from multicentric data more closely mimic the real-world practice environment and warrant additional validation ahead of prospective implementation into clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潺潺流水完成签到,获得积分10
1秒前
1秒前
1秒前
mangguobale完成签到,获得积分20
1秒前
SciGPT应助彭于晏采纳,获得10
2秒前
英姑应助彭于晏采纳,获得10
2秒前
爆米花应助彭于晏采纳,获得10
2秒前
斯文败类应助彭于晏采纳,获得10
2秒前
无花果应助彭于晏采纳,获得10
2秒前
脑洞疼应助彭于晏采纳,获得10
2秒前
orixero应助彭于晏采纳,获得10
2秒前
充电宝应助彭于晏采纳,获得10
2秒前
NexusExplorer应助彭于晏采纳,获得10
2秒前
田様应助彭于晏采纳,获得10
2秒前
2秒前
3秒前
aka2012发布了新的文献求助10
4秒前
4秒前
4秒前
陶陶发布了新的文献求助10
4秒前
zhanghl发布了新的文献求助10
4秒前
5秒前
lin发布了新的文献求助10
5秒前
张大鹅完成签到,获得积分10
5秒前
阿飞完成签到,获得积分10
5秒前
6秒前
6秒前
白了个白发布了新的文献求助30
6秒前
深情安青应助sunny30采纳,获得10
6秒前
6秒前
欢呼芒果发布了新的文献求助10
7秒前
Tiannn发布了新的文献求助10
7秒前
qiang完成签到,获得积分10
7秒前
今后应助excalibur采纳,获得10
7秒前
7秒前
科研123发布了新的文献求助10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
lliinn0105完成签到,获得积分20
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180