Whole-tumor 3D volumetric MRI-based radiomics approach for distinguishing between benign and malignant soft tissue tumors

无线电技术 医学 神经组阅片室 阿达布思 随机森林 单变量 放射科 磁共振成像 单变量分析 人工智能 Boosting(机器学习) 机器学习 接收机工作特性 软组织 支持向量机 多元分析 计算机科学 多元统计 内科学 精神科 神经学
作者
Brandon K.K. Fields,Natalie L. Demirjian,Darryl Hwang,Bino Varghese,Steven Cen,Xiaomeng Lei,Bhushan Desai,Vinay Duddalwar,George R. Matcuk
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (11): 8522-8535 被引量:32
标识
DOI:10.1007/s00330-021-07914-w
摘要

Our purpose was to differentiate between malignant from benign soft tissue neoplasms using a combination of MRI-based radiomics metrics and machine learning. Our retrospective study identified 128 histologically diagnosed benign (n = 36) and malignant (n = 92) soft tissue lesions. 3D ROIs were manually drawn on 1 sequence of interest and co-registered to other sequences obtained during the same study. One thousand seven hundred eight radiomics features were extracted from each ROI. Univariate analyses with supportive ROC analyses were conducted to evaluate the discriminative power of predictive models constructed using Real Adaptive Boosting (Adaboost) and Random Forest (RF) machine learning approaches. Univariate analyses demonstrated that 36.89% of individual radiomics varied significantly between benign and malignant lesions at the p ≤ 0.05 level. Adaboost and RF performed similarly well, with AUCs of 0.77 (95% CI 0.68–0.85) and 0.72 (95% CI 0.63–0.81), respectively, after 10-fold cross-validation. Restricting the machine learning models to only sequences extracted from T2FS and STIR sequences maintained comparable performance, with AUCs of 0.73 (95% CI 0.64–0.82) and 0.75 (95% CI 0.65–0.84), respectively. Machine learning decision classifiers constructed from MRI-based radiomics features show promising ability to preoperatively discriminate between benign and malignant soft tissue masses. Our approach maintains applicability even when the dataset is restricted to T2FS and STIR fluid-sensitive sequences, which may bolster practicality in clinical application scenarios by eliminating the need for complex co-registrations for multisequence analysis. • Predictive models constructed from MRI-based radiomics data and machine learning–augmented approaches yielded good discriminative power to correctly classify benign and malignant lesions on preoperative scans, with AUCs of 0.77 (95% CI 0.68–0.85) and 0.72 (95% CI 0.63–0.81) for Real Adaptive Boosting (Adaboost) and Random Forest (RF), respectively. • Restricting the models to only use metrics extracted from T2 fat-saturated (T2FS) and Short-Tau Inversion Recovery (STIR) sequences yielded similar performance, with AUCs of 0.73 (95% CI 0.64–0.82) and 0.75 (95% CI 0.65–0.84) for Adaboost and RF, respectively. • Radiomics-based machine learning decision classifiers constructed from multicentric data more closely mimic the real-world practice environment and warrant additional validation ahead of prospective implementation into clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想跟这个世界讲个道理完成签到,获得积分10
刚刚
ytrewq发布了新的文献求助10
1秒前
miao完成签到,获得积分10
1秒前
yiyi发布了新的文献求助20
1秒前
hellokitty完成签到,获得积分10
2秒前
蔡毛线完成签到,获得积分10
3秒前
4秒前
zzz完成签到,获得积分10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
zho应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
长雁应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得30
5秒前
慕青应助科研通管家采纳,获得10
5秒前
小白应助科研通管家采纳,获得20
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
jia完成签到,获得积分10
5秒前
慕青应助晓晓马儿采纳,获得10
6秒前
找找看完成签到,获得积分20
6秒前
典雅问寒应助安白采纳,获得10
7秒前
7秒前
陈图图完成签到,获得积分10
9秒前
慕青应助JIANG采纳,获得50
9秒前
偶Henry应助蔡毛线采纳,获得10
10秒前
10秒前
AnnaTian完成签到,获得积分10
12秒前
ke发布了新的文献求助10
14秒前
14秒前
艾瑞克完成签到,获得积分10
15秒前
16秒前
17秒前
英俊的铭应助xxhui采纳,获得10
19秒前
云里完成签到,获得积分10
20秒前
pluto应助ziyue采纳,获得20
20秒前
淡定的忆山完成签到 ,获得积分10
21秒前
点点发布了新的文献求助10
21秒前
威武霸气石震天完成签到,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734558
求助须知:如何正确求助?哪些是违规求助? 3278480
关于积分的说明 10009777
捐赠科研通 2995112
什么是DOI,文献DOI怎么找? 1643222
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196