Whole-tumor 3D volumetric MRI-based radiomics approach for distinguishing between benign and malignant soft tissue tumors

无线电技术 医学 神经组阅片室 阿达布思 随机森林 单变量 放射科 磁共振成像 单变量分析 人工智能 Boosting(机器学习) 机器学习 接收机工作特性 软组织 支持向量机 多元分析 计算机科学 多元统计 内科学 精神科 神经学
作者
Brandon K.K. Fields,Natalie L. Demirjian,Darryl Hwang,Bino Varghese,Steven Cen,Xiaomeng Lei,Bhushan Desai,Vinay Duddalwar,George R. Matcuk
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (11): 8522-8535 被引量:32
标识
DOI:10.1007/s00330-021-07914-w
摘要

Our purpose was to differentiate between malignant from benign soft tissue neoplasms using a combination of MRI-based radiomics metrics and machine learning. Our retrospective study identified 128 histologically diagnosed benign (n = 36) and malignant (n = 92) soft tissue lesions. 3D ROIs were manually drawn on 1 sequence of interest and co-registered to other sequences obtained during the same study. One thousand seven hundred eight radiomics features were extracted from each ROI. Univariate analyses with supportive ROC analyses were conducted to evaluate the discriminative power of predictive models constructed using Real Adaptive Boosting (Adaboost) and Random Forest (RF) machine learning approaches. Univariate analyses demonstrated that 36.89% of individual radiomics varied significantly between benign and malignant lesions at the p ≤ 0.05 level. Adaboost and RF performed similarly well, with AUCs of 0.77 (95% CI 0.68–0.85) and 0.72 (95% CI 0.63–0.81), respectively, after 10-fold cross-validation. Restricting the machine learning models to only sequences extracted from T2FS and STIR sequences maintained comparable performance, with AUCs of 0.73 (95% CI 0.64–0.82) and 0.75 (95% CI 0.65–0.84), respectively. Machine learning decision classifiers constructed from MRI-based radiomics features show promising ability to preoperatively discriminate between benign and malignant soft tissue masses. Our approach maintains applicability even when the dataset is restricted to T2FS and STIR fluid-sensitive sequences, which may bolster practicality in clinical application scenarios by eliminating the need for complex co-registrations for multisequence analysis. • Predictive models constructed from MRI-based radiomics data and machine learning–augmented approaches yielded good discriminative power to correctly classify benign and malignant lesions on preoperative scans, with AUCs of 0.77 (95% CI 0.68–0.85) and 0.72 (95% CI 0.63–0.81) for Real Adaptive Boosting (Adaboost) and Random Forest (RF), respectively. • Restricting the models to only use metrics extracted from T2 fat-saturated (T2FS) and Short-Tau Inversion Recovery (STIR) sequences yielded similar performance, with AUCs of 0.73 (95% CI 0.64–0.82) and 0.75 (95% CI 0.65–0.84) for Adaboost and RF, respectively. • Radiomics-based machine learning decision classifiers constructed from multicentric data more closely mimic the real-world practice environment and warrant additional validation ahead of prospective implementation into clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助葛力采纳,获得10
3秒前
猪仔5号完成签到 ,获得积分10
4秒前
乐观海云完成签到 ,获得积分10
12秒前
巾凡完成签到 ,获得积分10
13秒前
北国雪未消完成签到 ,获得积分10
18秒前
简单幸福完成签到 ,获得积分0
27秒前
火星上的发箍完成签到 ,获得积分10
43秒前
54秒前
卷卷完成签到 ,获得积分10
1分钟前
苏州九龙小7完成签到 ,获得积分10
1分钟前
jojo665完成签到 ,获得积分10
1分钟前
thangxtz完成签到,获得积分10
1分钟前
哥哥发布了新的文献求助10
1分钟前
干净思远完成签到,获得积分10
1分钟前
大气建辉完成签到 ,获得积分10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
火山完成签到 ,获得积分10
1分钟前
1分钟前
yuyang发布了新的文献求助10
1分钟前
1分钟前
追梦人2016完成签到 ,获得积分10
1分钟前
森淼完成签到 ,获得积分10
1分钟前
bkagyin应助cfd采纳,获得10
1分钟前
榆木小鸟完成签到 ,获得积分10
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
研友_8K2QJZ完成签到,获得积分10
1分钟前
wjswift完成签到,获得积分10
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
btcat完成签到,获得积分10
2分钟前
yuyang完成签到,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
nianshu完成签到 ,获得积分10
2分钟前
sydhwo完成签到 ,获得积分10
2分钟前
在水一方应助孙伟健采纳,获得10
2分钟前
2分钟前
温如军完成签到 ,获得积分10
2分钟前
孙伟健发布了新的文献求助10
2分钟前
2分钟前
孙伟健完成签到,获得积分10
2分钟前
Roy完成签到,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244791
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252919
捐赠科研通 2556928
什么是DOI,文献DOI怎么找? 1385502
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626303