亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning approach to screen for preclinical Alzheimer's disease

神经退行性变 脑电图 生物标志物 神经心理学 医学 疾病 队列 肿瘤科 阿尔茨海默病 内科学 预测值 神经科学 病理 听力学 心理学 生物 认知 生物化学
作者
Sinead Gaubert,Marion Houot,Federico Raimondo,Manon Ansart,Marie‐Constance Corsi,Lionel Naccache,Jacobo Sitt,Marie‐Odile Habert,Bruno Dubois,Fabrizio De Vico Fallani,Stanley Durrleman,Stéphane Epelbaum
出处
期刊:Neurobiology of Aging [Elsevier BV]
卷期号:105: 205-216 被引量:23
标识
DOI:10.1016/j.neurobiolaging.2021.04.024
摘要

Combining multimodal biomarkers could help in the early diagnosis of Alzheimer's disease (AD). We included 304 cognitively normal individuals from the INSIGHT-preAD cohort. Amyloid and neurodegeneration were assessed on 18F-florbetapir and 18F-fluorodeoxyglucose PET, respectively. We used a nested cross-validation approach with non-invasive features (electroencephalography [EEG], APOE4 genotype, demographic, neuropsychological and MRI data) to predict: 1/ amyloid status; 2/ neurodegeneration status; 3/ decline to prodromal AD at 5-year follow-up. Importantly, EEG was most strongly predictive of neurodegeneration, even when reducing the number of channels from 224 down to 4, as 4-channel EEG best predicted neurodegeneration (negative predictive value [NPV] = 82%, positive predictive value [PPV] = 38%, 77% specificity, 45% sensitivity). The combination of demographic, neuropsychological data, APOE4 and hippocampal volumetry most strongly predicted amyloid (80% NPV, 41% PPV, 70% specificity, 58% sensitivity) and most strongly predicted decline to prodromal AD at 5 years (97% NPV, 14% PPV, 83% specificity, 50% sensitivity). Thus, machine learning can help to screen patients at high risk of preclinical AD using non-invasive and affordable biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
8秒前
23秒前
27秒前
Kevin发布了新的文献求助10
45秒前
lessismore发布了新的文献求助10
57秒前
HYQ关闭了HYQ文献求助
1分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
Kevin完成签到,获得积分10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
漂亮的秋天完成签到 ,获得积分10
3分钟前
yummm完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
核桃应助不安的靖柔采纳,获得10
3分钟前
核桃应助不安的靖柔采纳,获得10
3分钟前
不安的靖柔完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
whj完成签到 ,获得积分10
7分钟前
7分钟前
迟梦琪发布了新的文献求助10
7分钟前
HYQ发布了新的文献求助10
7分钟前
迟梦琪完成签到,获得积分20
7分钟前
三世完成签到 ,获得积分10
8分钟前
gszy1975完成签到,获得积分10
8分钟前
8分钟前
红影完成签到,获得积分10
8分钟前
细腻笑卉发布了新的文献求助20
9分钟前
细腻笑卉完成签到 ,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
feihua1完成签到 ,获得积分10
11分钟前
11分钟前
tranphucthinh发布了新的文献求助10
12分钟前
tranphucthinh完成签到,获得积分10
12分钟前
CodeCraft应助章赛采纳,获得10
13分钟前
14分钟前
SciGPT应助小冯看不懂采纳,获得10
14分钟前
科研通AI5应助羞涩的寒松采纳,获得10
14分钟前
熊熊完成签到 ,获得积分10
14分钟前
14分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127256
求助须知:如何正确求助?哪些是违规求助? 4330378
关于积分的说明 13493304
捐赠科研通 4165925
什么是DOI,文献DOI怎么找? 2283680
邀请新用户注册赠送积分活动 1284704
关于科研通互助平台的介绍 1224683