Molecular characterization of depression trait and state

重性抑郁障碍 单胺类 扣带回前部 转录组 内科学 心理学 神经科学 生物 医学 遗传学 基因 扁桃形结构 认知 基因表达 受体 血清素
作者
Rammohan Shukla,Dwight F. Newton,Akiko Sumitomo,Habil Zare,Robert E. McCullumsmith,David A. Lewis,Toshifumi Tomoda,Etienne Sibille
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:27 (2): 1083-1094 被引量:29
标识
DOI:10.1038/s41380-021-01347-z
摘要

Major depressive disorder (MDD) is a brain disorder often characterized by recurrent episode and remission phases. The molecular correlates of MDD have been investigated in case-control comparisons, but the biological alterations associated with illness trait (regardless of clinical phase) or current state (symptomatic and remitted phases) remain largely unknown, limiting targeted drug discovery. To characterize MDD trait- and state-dependent changes, in single or recurrent depressive episode or remission, we generated transcriptomic profiles of subgenual anterior cingulate cortex of postmortem subjects in first MDD episode (n = 20), in remission after a single episode (n = 15), in recurrent episode (n = 20), in remission after recurring episodes (n = 15) and control subject (n = 20). We analyzed the data at the gene, biological pathway, and cell-specific molecular levels, investigated putative causal events and therapeutic leads. MDD-trait was associated with genes involved in inflammation, immune activation, and reduced bioenergetics (q < 0.05) whereas MDD-states were associated with altered neuronal structure and reduced neurotransmission (q < 0.05). Cell-level deconvolution of transcriptomic data showed significant change in density of GABAergic interneurons positive for corticotropin-releasing hormone, somatostatin, or vasoactive-intestinal peptide (p < 3 × 10−3). A probabilistic Bayesian-network approach showed causal roles of immune-system-activation (q < 8.67 × 10−3), cytokine-response (q < 4.79 × 10−27) and oxidative-stress (q < 2.05 × 10−3) across MDD-phases. Gene-sets associated with these putative causal changes show inverse associations with the transcriptomic effects of dopaminergic and monoaminergic ligands. The study provides first insights into distinct cellular and molecular pathologies associated with trait- and state-MDD, on plasticity mechanisms linking the two pathologies, and on a method of drug discovery focused on putative disease-causing pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiojio完成签到,获得积分10
刚刚
蔡小葵发布了新的文献求助10
刚刚
Acc完成签到,获得积分10
刚刚
刚刚
yasan发布了新的文献求助10
刚刚
小怀完成签到 ,获得积分10
1秒前
1秒前
Mia完成签到 ,获得积分20
1秒前
友好灵萱完成签到,获得积分10
1秒前
1秒前
ah完成签到,获得积分10
2秒前
科研CY发布了新的文献求助10
2秒前
假行僧完成签到,获得积分10
2秒前
刘芸芸发布了新的文献求助10
2秒前
赖建琛完成签到 ,获得积分10
3秒前
3秒前
3秒前
哆啦顺利毕业完成签到,获得积分10
4秒前
4秒前
32完成签到 ,获得积分10
4秒前
曼尼完成签到,获得积分10
4秒前
安安完成签到 ,获得积分10
4秒前
花生爱发文完成签到,获得积分10
5秒前
搜集达人应助大晨采纳,获得10
5秒前
梦幻完成签到 ,获得积分10
5秒前
5秒前
半糖完成签到,获得积分10
5秒前
蔡小葵完成签到,获得积分10
6秒前
Drew发布了新的文献求助10
6秒前
ruxing发布了新的文献求助10
7秒前
在水一方应助Li采纳,获得10
8秒前
科研CY完成签到,获得积分10
8秒前
司徒迎曼发布了新的文献求助10
8秒前
无花果应助su采纳,获得10
8秒前
简隋英完成签到,获得积分20
8秒前
深情安青应助曾友采纳,获得10
8秒前
稳重的灵安完成签到,获得积分10
8秒前
9秒前
grzzz完成签到,获得积分10
9秒前
xyz发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762