Automated Design of Analog Circuits Using Reinforcement Learning

计算机科学 寄生提取 共栅 模拟电子学 电子工程 计算机工程 运算放大器 网络拓扑 计算机体系结构 电子线路 放大器 电气工程 工程类 带宽(计算) 计算机网络 操作系统
作者
Keertana Settaluri,Zhaokai Liu,Rishubh Khurana,Arash Mirhaj,Rajeev Jain,Borivoje Nikolić
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2794-2807 被引量:25
标识
DOI:10.1109/tcad.2021.3120547
摘要

Analog and mixed-signal (AMS) blocks are often a crucial and time-consuming part of System-on-Chip (SoC) design, primarily due to a manual circuit and layout iterations. Existing automated solutions for selecting circuit parameters for a given target specification are often not efficient, accurate, or reliable. In order for an automated sizing tool to be practical, we posit that it must: 1) return valid results for a large range of target specifications; 2) understand where and why it is unable to meet certain specifications; 3) consider true layout parasitic simulations for complete end-to-end design; and 4) be automated, allowing most of the design effort to fall on the tool. In this article, we address these critical points by establishing an automated reinforcement learning framework, AutoCkt, by 1) successfully deploying it on a complex two-stage transimpedance amplifier and two-stage folded cascode with biasing in the 16-nm FinFet technology; 2) implementing a new combined distribution deployment algorithm to improve efficiency; 3) analyzing in-depth the efficacy of the trained agent; and 4) demonstrating the functionality of this tool when considering a topology that is highly sensitive to layout parasitics. Our algorithm not only successfully reaches unique, valid, and practical performances, but also does so in state-of-the-art run time, up to 38X more efficient than prior work. In addition, our tool averages just four parasitic simulations obtained by using the Berkeley Analog Generator, to achieve a target specification post-layout for the folded cascode. AutoCkt successfully generates LVS-passed designs with validation in process corner variation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于凌娇完成签到,获得积分10
刚刚
刚刚
lhh完成签到 ,获得积分10
1秒前
尘林完成签到,获得积分10
1秒前
莫道桑榆完成签到,获得积分10
1秒前
孙福禄应助深情的迎海采纳,获得10
1秒前
大胖完成签到,获得积分10
1秒前
千秋入画发布了新的文献求助10
2秒前
飞飞加油呀完成签到,获得积分10
2秒前
汉堡包应助22采纳,获得10
2秒前
香蕉觅云应助zz采纳,获得10
2秒前
慕青应助恨安采纳,获得10
3秒前
沉静的万天完成签到 ,获得积分10
3秒前
xx发布了新的文献求助10
3秒前
SZK完成签到,获得积分10
4秒前
张舒涵完成签到,获得积分10
4秒前
4秒前
5秒前
kathy完成签到,获得积分10
7秒前
ypp发布了新的文献求助10
7秒前
南兮发布了新的文献求助10
7秒前
thisky完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
松谦发布了新的文献求助10
8秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
yar应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
朱建军应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635