A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach

组学 疾病 痴呆 蛋白质组学 生物信息学 神经病理学 生物标志物发现 基因组学 神经影像学 计算生物学 医学 数据科学 计算机科学 生物 病理 精神科 基因 基因组 生物化学
作者
Mei Sze Tan,Phaik‐Leng Cheah,Ai‐Vyrn Chin,Lai‐Meng Looi,Siow‐Wee Chang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104947-104947 被引量:42
标识
DOI:10.1016/j.compbiomed.2021.104947
摘要

Alzheimer's Disease (AD) is a neurodegenerative disease that affects cognition and is the most common cause of dementia in the elderly. As the number of elderly individuals increases globally, the incidence and prevalence of AD are expected to increase. At present, AD is diagnosed clinically, according to accepted criteria. The essential elements in the diagnosis of AD include a patients history, a physical examination and neuropsychological testing, in addition to appropriate investigations such as neuroimaging. The omics-based approach is an emerging field of study that may not only aid in the diagnosis of AD but also facilitate the exploration of factors that influence the development of the disease. Omics techniques, including genomics, transcriptomics, proteomics and metabolomics, may reveal the pathways that lead to neuronal death and identify biomolecular markers associated with AD. This will further facilitate an understanding of AD neuropathology. In this review, omics-based approaches that were implemented in studies on AD were assessed from a bioinformatics perspective. Current state-of-the-art statistical and machine learning approaches used in the single omics analysis of AD were compared based on correlations of variants, differential expression, functional analysis and network analysis. This was followed by a review of the approaches used in the integration and analysis of multi-omics of AD. The strengths and limitations of multi-omics analysis methods were explored and the issues and challenges associated with omics studies of AD were highlighted. Lastly, future studies in this area of research were justified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqwm发布了新的文献求助10
刚刚
刚刚
粗犷的秋尽完成签到,获得积分10
1秒前
田様应助nilu采纳,获得10
3秒前
4秒前
左安完成签到,获得积分10
5秒前
哈哈哈发布了新的文献求助10
5秒前
万能图书馆应助甜蜜浩然采纳,获得10
5秒前
假面绅士发布了新的文献求助10
7秒前
隐形元绿完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
12秒前
科研通AI2S应助假面绅士采纳,获得10
13秒前
科研通AI2S应助假面绅士采纳,获得10
13秒前
nilu完成签到,获得积分10
13秒前
郑zheng发布了新的文献求助10
13秒前
李健的粉丝团团长应助Xu采纳,获得10
14秒前
14秒前
小鱼发布了新的文献求助10
15秒前
WSX完成签到,获得积分10
16秒前
可靠的南霜完成签到,获得积分20
17秒前
小伊001完成签到,获得积分10
17秒前
nilu发布了新的文献求助10
19秒前
风雨无阻发布了新的文献求助10
19秒前
19秒前
21秒前
23秒前
万能的小叮当完成签到,获得积分0
26秒前
26秒前
26秒前
27秒前
雪花君发布了新的文献求助10
27秒前
27秒前
lalala发布了新的文献求助10
28秒前
31秒前
小小科研人完成签到,获得积分10
32秒前
zpq完成签到,获得积分10
33秒前
执着牛青发布了新的文献求助10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240