Transition metal-catalysed molecular n-doping of organic semiconductors

掺杂剂 兴奋剂 材料科学 半导体 三元运算 过渡金属 化学物理 纳米技术 有机半导体 催化作用 光电子学 化学 有机化学 计算机科学 程序设计语言
作者
Han Guo,Chi‐Yuan Yang,Xianhe Zhang,Alessandro Motta,Kui Feng,Xia Yu,Yongqiang Shi,Ziang Wu,Kun Yang,Jianhua Chen,Qiaogan Liao,Yumin Tang,Huiliang Sun,Han Young Woo,Simone Fabiano,Antonio Facchetti,Xugang Guo
出处
期刊:Nature [Springer Nature]
卷期号:599 (7883): 67-73 被引量:197
标识
DOI:10.1038/s41586-021-03942-0
摘要

Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices1–9. N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (η) of less than 10%1,10. An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability1,5,6,9,11, which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd2(dba)3) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased η in a much shorter doping time and high electrical conductivities (above 100 S cm−1; ref. 12). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications12, 13. Electron doping of organic semiconductors is typically inefficient, but here a precursor molecular dopant is used to deliver higher n-doping efficiency in a much shorter doping time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanzhang2030完成签到,获得积分10
刚刚
EunolusZ发布了新的文献求助10
1秒前
jyy应助KongHN采纳,获得10
1秒前
jyy应助KongHN采纳,获得10
1秒前
健忘的迎夏完成签到,获得积分10
1秒前
jyy应助KongHN采纳,获得10
1秒前
科研通AI2S应助KongHN采纳,获得10
1秒前
Ava应助silong采纳,获得10
1秒前
iNk应助玩转非晶采纳,获得10
2秒前
过时的又槐完成签到,获得积分10
2秒前
VDC应助yx采纳,获得30
2秒前
2秒前
zwy完成签到,获得积分10
3秒前
3秒前
欲望被鬼举报gyx求助涉嫌违规
3秒前
123完成签到,获得积分10
3秒前
ljw发布了新的文献求助10
3秒前
4秒前
金阿垚在科研应助yahaha采纳,获得10
4秒前
小冉完成签到,获得积分10
4秒前
深情夏彤完成签到,获得积分10
4秒前
后知后觉发布了新的文献求助10
6秒前
整齐泥猴桃完成签到,获得积分10
6秒前
xiaoxiaomi应助舒涵采纳,获得30
6秒前
情怀应助JERRY采纳,获得10
6秒前
Hungrylunch应助CHL5722采纳,获得20
6秒前
liucong046完成签到,获得积分10
6秒前
6秒前
CodeCraft应助科研cc采纳,获得10
6秒前
7秒前
云里完成签到,获得积分10
7秒前
谦让傲菡完成签到 ,获得积分10
7秒前
小汪完成签到,获得积分10
7秒前
8秒前
qyhl完成签到,获得积分10
8秒前
xwc完成签到,获得积分10
8秒前
Booiys完成签到,获得积分10
9秒前
9秒前
852应助xqwwqx采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672