热失控
材料科学
防火墙(物理)
易燃液体
热的
猝灭(荧光)
核工程
过热(电)
阳极
纳秒
光电子学
工程物理
电气工程
电池(电)
热力学
废物管理
工程类
电极
激光器
化学
带电黑洞
功率(物理)
物理化学
物理
光学
量子力学
熵(时间箭头)
极端黑洞
荧光
作者
Lei Li,Chengshan Xu,Runze Chang,Chong Yang,Chao Jia,Li Wang,Jianan Song,Ziwei Li,Fangshu Zhang,Fang Ben,Xiaoding Wei,Huaibin Wang,Qiong Wu,Zhaofeng Chen,Xiangming He,Xuning Feng,Hui Wu,Minggao Ouyang
标识
DOI:10.1016/j.ensm.2021.05.018
摘要
Cascaded thermal runaway (TR) propagation is the utmost safety issue for large-format lithium-ion battery (LIB) modules because of the high risk of system fires or explosions. However, quenching TR without side effects still remains a challenge. Herein, we delivered an ultrathin smart firewall concept for avoiding the TR propagation in a LIB module. We demonstrate that the firewalls have thermally-triggered switchable thermal physical properties because of the synergistic effect of non-flammable phase change materials (NFPCM) and flexible silica nanofiber mats. Under TR condition, the firewalls give rise to multiple functions simultaneously, including cooling, fire extinguishing and thermal insulation. Consequently, the TR propagation between fully charged 50 Ah LIBs, with a transient thermal shock of up to 53 kW, is successfully suppressed by 1-mm-thick smart firewalls, yielding a maximum cell-to-cell temperature gap of 512 °C. The smart firewall design provides a reliable approach to quench TR propagation in large-format LIBs, which can also be suitable for other dynamically adaptive thermal-protection applications for oil tanks, space exploration, and firefighting equipment.
科研通智能强力驱动
Strongly Powered by AbleSci AI