Hierarchical-order multimodal interaction fusion network for grading gliomas

计算机科学 分级(工程) 人工智能 胶质瘤 机器学习 水准点(测量) 深度学习 人工神经网络 模态(人机交互) 分割 特征(语言学) 模式识别(心理学) 医学 语言学 哲学 土木工程 大地测量学 癌症研究 工程类 地理
作者
Man He,Kangfu Han,Yu Zhang,Wufan Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (21): 215016-215016 被引量:11
标识
DOI:10.1088/1361-6560/ac30a1
摘要

Significance. Gliomas are the most common type of primary brain tumors and have different grades. Accurate grading of a glioma is therefore significant for its clinical treatment planning and prognostic assessment with multiple-modality magnetic resonance imaging (MRI).Objective and Approach. In this study, we developed a noninvasive deep-learning method based on multimodal MRI for grading gliomas by focusing on effective multimodal fusion via leveraging collaborative and diverse high-order statistical information. Specifically, a novel high-order multimodal interaction module was designed to promote interactive learning of multimodal knowledge for more efficient fusion. For more powerful feature expression and feature correlation learning, the high-order attention mechanism is embedded in the interaction module for modeling complex and high-order statistical information to enhance the classification capability of the network. Moreover, we applied increasing orders at different levels to hierarchically recalibrate each modality stream through diverse-order attention statistics, thus encouraging all-sided attention knowledge with lesser parameters.Main results. To evaluate the effectiveness of the proposed scheme, extensive experiments were conducted on The Cancer Imaging Archive (TCIA) and Multimodal Brain Tumor Image Segmentation Benchmark 2017 (BraTS2017) datasets with five-fold cross validation to demonstrate that the proposed method can achieve high prediction performance, with area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity values of 95.2%, 94.28%, 95.24%, and 92.00% on the BraTS2017 and 93.50%, 92.86%, 97.14%, and 90.48% on TCIA datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助wlei采纳,获得10
刚刚
Supine.完成签到,获得积分10
1秒前
zhouleiwang发布了新的文献求助10
2秒前
2秒前
无花果应助liu采纳,获得10
3秒前
大罗完成签到,获得积分10
3秒前
yoo完成签到,获得积分10
3秒前
汉堡包应助nimabide采纳,获得20
4秒前
眼睛大的松鼠完成签到,获得积分10
5秒前
5秒前
6秒前
一只燕子发布了新的文献求助10
6秒前
7秒前
蒸有妮的发布了新的文献求助10
8秒前
脑洞疼应助南风采纳,获得30
9秒前
领导范儿应助愉快的烤鸡采纳,获得10
9秒前
10秒前
10秒前
小海棠完成签到,获得积分10
11秒前
skmksd完成签到,获得积分10
11秒前
12秒前
空白幻想丶完成签到,获得积分10
12秒前
12秒前
12秒前
ym完成签到,获得积分10
12秒前
13秒前
邱屁屁发布了新的文献求助10
14秒前
谦让语兰完成签到,获得积分10
14秒前
14秒前
李剑鸿发布了新的文献求助30
15秒前
16秒前
17秒前
17秒前
直率依珊发布了新的文献求助10
18秒前
18秒前
18秒前
英俊的铭应助Ruiruirui采纳,获得10
19秒前
wanci应助Ruiruirui采纳,获得10
19秒前
共享精神应助HHHSQ采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762117
求助须知:如何正确求助?哪些是违规求助? 3305928
关于积分的说明 10135991
捐赠科研通 3020054
什么是DOI,文献DOI怎么找? 1658688
邀请新用户注册赠送积分活动 792055
科研通“疑难数据库(出版商)”最低求助积分说明 754840