Vision-assisted BIM reconstruction from 3D LiDAR point clouds for MEP scenes

点云 激光雷达 计算机科学 组分(热力学) 分割 人工智能 计算机视觉 点(几何) RGB颜色模型 三维建模 建筑信息建模 对象(语法) 遥感 工程类 地理 数学 热力学 物理 化学工程 几何学 相容性(地球化学)
作者
Boyu Wang,Qian Wang,Jack C.P. Cheng,Changhao Song,Chao Yin
出处
期刊:Automation in Construction [Elsevier]
卷期号:133: 103997-103997 被引量:29
标识
DOI:10.1016/j.autcon.2021.103997
摘要

Mechanical, electrical and plumbing (MEP) system provides various services and creates comfortable environments to residents in cities. To enhance the management efficiency of the highly complex MEP system, as-built building information modeling (BIM) is increasingly adopted in the world. Currently, as-built BIMs are mostly drawn manually by modelers in BIM modeling software referring to point clouds or on-site photos, which is time consuming and labor intensive. This study presents a novel fused BIM reconstruction approach for MEP scenes. The proposed approach makes the best of the rich semantic information provided by images and accurate geometry information provided by 3D LiDAR point clouds. Firstly, a state-of-the-art deep learning model focusing on semantic segmentation is fine-tuned for the MEP dataset, and then RGB images collected with depth camera are segmented with the well-trained model. Secondly, taking the segmented images and the corresponding depth images as input, a semantic-rich 3D map is generated. Thirdly, an instance-aware component extraction algorithm in LiDAR point clouds given approximate object distribution in 3D space is developed. In the component extraction algorithm, a label transfer technique is proposed to firstly determine the rough locations of targeting objects in LiDAR point clouds. Then, accurate component locations are determined for three types of components including irregular shaped components, regular shaped components, and secondary components attached to walls. Finally, the BIM model is reconstructed based on component extraction results. To validate the proposed technique, experiments were conducted in four MEP rooms in a water treatment plant in Hong Kong. It is demonstrated that the proposed technique is more accurate and more efficient with wider range of applications compared to previous BIM reconstruction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuangfeng1853完成签到 ,获得积分10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得30
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
Chillichee应助科研通管家采纳,获得50
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Yy发布了新的文献求助10
2秒前
3秒前
36456657应助xu采纳,获得10
3秒前
打打应助22采纳,获得10
3秒前
Lin_Yongqi发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
彳亍完成签到 ,获得积分10
5秒前
星辰大海应助zhouleibio采纳,获得10
6秒前
haui发布了新的文献求助10
8秒前
...发布了新的文献求助10
9秒前
深情安青应助啵妞采纳,获得10
9秒前
MH0718完成签到 ,获得积分10
9秒前
希望天下0贩的0应助江芯采纳,获得10
9秒前
12秒前
SciGPT应助jack采纳,获得10
12秒前
刘旺林完成签到,获得积分10
13秒前
李健的小迷弟应助一二采纳,获得10
14秒前
15秒前
17秒前
Y191206完成签到,获得积分10
17秒前
hanjresearch完成签到,获得积分10
18秒前
卓垚完成签到,获得积分10
18秒前
虚幻的幻然完成签到,获得积分10
18秒前
19秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462284
求助须知:如何正确求助?哪些是违规求助? 3055899
关于积分的说明 9049652
捐赠科研通 2745475
什么是DOI,文献DOI怎么找? 1506346
科研通“疑难数据库(出版商)”最低求助积分说明 696073
邀请新用户注册赠送积分活动 695618