Vision-assisted BIM reconstruction from 3D LiDAR point clouds for MEP scenes

点云 激光雷达 计算机科学 组分(热力学) 分割 人工智能 计算机视觉 点(几何) RGB颜色模型 三维建模 建筑信息建模 对象(语法) 遥感 工程类 地理 数学 热力学 物理 化学工程 几何学 相容性(地球化学)
作者
Boyu Wang,Qian Wang,Jack C.P. Cheng,Changhao Song,Chao Yin
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:133: 103997-103997 被引量:29
标识
DOI:10.1016/j.autcon.2021.103997
摘要

Mechanical, electrical and plumbing (MEP) system provides various services and creates comfortable environments to residents in cities. To enhance the management efficiency of the highly complex MEP system, as-built building information modeling (BIM) is increasingly adopted in the world. Currently, as-built BIMs are mostly drawn manually by modelers in BIM modeling software referring to point clouds or on-site photos, which is time consuming and labor intensive. This study presents a novel fused BIM reconstruction approach for MEP scenes. The proposed approach makes the best of the rich semantic information provided by images and accurate geometry information provided by 3D LiDAR point clouds. Firstly, a state-of-the-art deep learning model focusing on semantic segmentation is fine-tuned for the MEP dataset, and then RGB images collected with depth camera are segmented with the well-trained model. Secondly, taking the segmented images and the corresponding depth images as input, a semantic-rich 3D map is generated. Thirdly, an instance-aware component extraction algorithm in LiDAR point clouds given approximate object distribution in 3D space is developed. In the component extraction algorithm, a label transfer technique is proposed to firstly determine the rough locations of targeting objects in LiDAR point clouds. Then, accurate component locations are determined for three types of components including irregular shaped components, regular shaped components, and secondary components attached to walls. Finally, the BIM model is reconstructed based on component extraction results. To validate the proposed technique, experiments were conducted in four MEP rooms in a water treatment plant in Hong Kong. It is demonstrated that the proposed technique is more accurate and more efficient with wider range of applications compared to previous BIM reconstruction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助笨笨芯采纳,获得10
刚刚
medlive2020完成签到,获得积分10
1秒前
txy完成签到,获得积分10
2秒前
老实续发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
medlive2020发布了新的文献求助10
5秒前
领导范儿应助小达采纳,获得10
5秒前
书于竹帛发布了新的文献求助10
5秒前
呱呱完成签到,获得积分10
6秒前
杜ss完成签到,获得积分20
6秒前
6秒前
yowgo完成签到,获得积分10
6秒前
cat发布了新的文献求助10
6秒前
武六七完成签到,获得积分10
6秒前
yznfly应助Ying采纳,获得30
7秒前
super完成签到,获得积分10
7秒前
7秒前
小蘑菇应助jjk采纳,获得10
8秒前
MZT完成签到,获得积分10
8秒前
雪白襄发布了新的文献求助20
8秒前
8秒前
10秒前
开心快乐123完成签到,获得积分10
11秒前
顾矜应助超级八宝粥采纳,获得10
11秒前
东郭雁梅完成签到,获得积分10
11秒前
灰哥的灰发布了新的文献求助10
11秒前
11秒前
yang发布了新的文献求助10
12秒前
12秒前
漂亮的不言完成签到 ,获得积分10
13秒前
芯止谭轩完成签到,获得积分10
13秒前
嚭嚭发布了新的文献求助10
14秒前
烟花应助顺心幻波采纳,获得10
15秒前
东郭雁梅发布了新的文献求助10
15秒前
难过的谷芹发布了新的文献求助100
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344