Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli

氯化十六烷基吡啶 超声 抗菌活性 Zeta电位 十二烷基硫酸钠 化学 色谱法 分散稳定性 肺表面活性物质 响应面法 核化学 纳米颗粒 纳米技术 材料科学 细菌 生物化学 生物 遗传学
作者
Zhehao Yang,Qiao He,Balarabe B. Ismail,Yaqin Hu,Mingming Guo
出处
期刊:Food Control [Elsevier]
卷期号:133: 108609-108609 被引量:39
标识
DOI:10.1016/j.foodcont.2021.108609
摘要

This study optimized the ultrasound emulsification process using response surface methodology (RSM) to obtain thyme essential oil nanoemulsions (TEON) with excellent dispersion characteristics and antibacterial activity. Based on the single-factor experiments, the effects of ultrasonic power (350–550 W), time (5–15 min) and emulsifier [Tween 80 (T80), sodium dodecyl sulfate (SDS), and cetylpyridinium chloride (CPC)] concentrations were determined on response variables, including droplet size, PDI, zeta-potential, MIC, and MBC. Further analysis of stability and antibacterial mechanism were also conducted based on the optimal results. TEON-T80, obtained at 527.45 W, 9.97 min, and 5.94 mg/mL with good stability, killed E. coli through extracellular release, whereas TEON-CPC obtained at 350 W, 14.44 min, and 0.15 mg/mL exhibited excellent antibacterial activity through electrostatic interaction. TEON-SDS obtained at 350 W, 15 min, and 1 mg/mL was poor in stability and antibacterial activity. All nanoemulsions destroyed cell morphology and caused severe cytoplasm leakage. Through a preliminary antibacterial mechanism study, we hypothesized a controlled in vitro release for TEON-T80, electrostatic interaction for TEON-CPC, and self-assembly together with cell penetration for TEON-SDS. Considering all the results, TEON-CPC was determined as the best nanoemulsion for optimal antibacterial activity. Also, optimizing the ultrasonication process is useful for preparing TEON with enhanced dispersion characteristics and antibacterial activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36456657应助科研通管家采纳,获得10
刚刚
Xxanny应助科研通管家采纳,获得200
刚刚
无花果应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
轻松白秋发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得30
1秒前
text发布了新的文献求助10
1秒前
郭晓宇发布了新的文献求助10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
椰蓉面包糠完成签到,获得积分10
1秒前
在水一方应助科研通管家采纳,获得30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
梁三柏应助科研通管家采纳,获得10
1秒前
高大的战斗机完成签到,获得积分10
1秒前
SYLH应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得20
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
煎鸡蛋完成签到,获得积分10
3秒前
3秒前
小张不吃香菜完成签到,获得积分10
3秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558083
求助须知:如何正确求助?哪些是违规求助? 3133203
关于积分的说明 9401074
捐赠科研通 2833299
什么是DOI,文献DOI怎么找? 1557421
邀请新用户注册赠送积分活动 727253
科研通“疑难数据库(出版商)”最低求助积分说明 716257