亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Workflow Applications in Screening Mammography: Systematic Review and Meta-Analysis

医学 荟萃分析 梅德林 医学物理学 工作流程 乳腺摄影术 系统回顾 内科学 政治学 癌症 法学 乳腺癌 经济 管理
作者
Sarah Hickman,Ramona Woitek,Elizabeth Le,Yu Ri Im,Carina Mouritsen Luxhøj,Angelica I. Avilés-Rivero,Gabrielle Baxter,James Mackay,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 88-104 被引量:91
标识
DOI:10.1148/radiol.2021210391
摘要

Background Advances in computer processing and improvements in data availability have led to the development of machine learning (ML) techniques for mammographic imaging. Purpose To evaluate the reported performance of stand-alone ML applications for screening mammography workflow. Materials and Methods Ovid Embase, Ovid Medline, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science literature databases were searched for relevant studies published from January 2012 to September 2020. The study was registered with the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42019156016). Stand-alone technology was defined as a ML algorithm that can be used independently of a human reader. Studies were quality assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 and the Prediction Model Risk of Bias Assessment Tool, and reporting was evaluated using the Checklist for Artificial Intelligence in Medical Imaging. A primary meta-analysis included the top-performing algorithm and corresponding reader performance from which pooled summary estimates for the area under the receiver operating characteristic curve (AUC) were calculated using a bivariate model. Results Fourteen articles were included, which detailed 15 studies for stand-alone detection (n = 8) and triage (n = 7). Triage studies reported that 17%–91% of normal mammograms identified could be read by adapted screening, while "missing" an estimated 0%–7% of cancers. In total, an estimated 185 252 cases from three countries with more than 39 readers were included in the primary meta-analysis. The pooled sensitivity, specificity, and AUC was 75.4% (95% CI: 65.6, 83.2; P = .11), 90.6% (95% CI: 82.9, 95.0; P = .40), and 0.89 (95% CI: 0.84, 0.98), respectively, for algorithms, and 73.0% (95% CI: 60.7, 82.6), 88.6% (95% CI: 72.4, 95.8), and 0.85 (95% CI: 0.78, 0.97), respectively, for readers. Conclusion Machine learning (ML) algorithms that demonstrate a stand-alone application in mammographic screening workflows achieve or even exceed human reader detection performance and improve efficiency. However, this evidence is from a small number of retrospective studies. Therefore, further rigorous independent external prospective testing of ML algorithms to assess performance at preassigned thresholds is required to support these claims. ©RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Whitman and Moseley in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
45秒前
58秒前
1分钟前
1分钟前
2分钟前
阿兹卡班完成签到 ,获得积分10
2分钟前
nicolaslcq完成签到,获得积分0
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
weihe完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
xrrrr发布了新的文献求助10
5分钟前
5分钟前
1206425219密发布了新的文献求助10
6分钟前
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
6分钟前
1206425219密发布了新的文献求助10
6分钟前
6分钟前
1206425219密完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
lxm发布了新的文献求助10
6分钟前
在水一方应助lxm采纳,获得10
7分钟前
1206425219密发布了新的文献求助10
7分钟前
8分钟前
虚心柠檬完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324260
求助须知:如何正确求助?哪些是违规求助? 4465245
关于积分的说明 13894232
捐赠科研通 4357091
什么是DOI,文献DOI怎么找? 2393173
邀请新用户注册赠送积分活动 1386688
关于科研通互助平台的介绍 1357052