Machine Learning for Workflow Applications in Screening Mammography: Systematic Review and Meta-Analysis

医学 急诊分诊台 荟萃分析 检查表 梅德林 医学物理学 接收机工作特性 工作流程 乳腺摄影术 机器学习 人工智能 协议(科学) 系统回顾 内科学 急诊医学 病理 数据库 计算机科学 心理学 认知心理学 法学 替代医学 乳腺癌 癌症 政治学
作者
Sarah Hickman,Ramona Woitek,Elizabeth Le,Yu Ri Im,Carina Mouritsen Luxhøj,Angelica I. Avilés-Rivero,Gabrielle Baxter,James Mackay,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 88-104 被引量:51
标识
DOI:10.1148/radiol.2021210391
摘要

Background Advances in computer processing and improvements in data availability have led to the development of machine learning (ML) techniques for mammographic imaging. Purpose To evaluate the reported performance of stand-alone ML applications for screening mammography workflow. Materials and Methods Ovid Embase, Ovid Medline, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science literature databases were searched for relevant studies published from January 2012 to September 2020. The study was registered with the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42019156016). Stand-alone technology was defined as a ML algorithm that can be used independently of a human reader. Studies were quality assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 and the Prediction Model Risk of Bias Assessment Tool, and reporting was evaluated using the Checklist for Artificial Intelligence in Medical Imaging. A primary meta-analysis included the top-performing algorithm and corresponding reader performance from which pooled summary estimates for the area under the receiver operating characteristic curve (AUC) were calculated using a bivariate model. Results Fourteen articles were included, which detailed 15 studies for stand-alone detection (n = 8) and triage (n = 7). Triage studies reported that 17%–91% of normal mammograms identified could be read by adapted screening, while “missing” an estimated 0%–7% of cancers. In total, an estimated 185 252 cases from three countries with more than 39 readers were included in the primary meta-analysis. The pooled sensitivity, specificity, and AUC was 75.4% (95% CI: 65.6, 83.2; P = .11), 90.6% (95% CI: 82.9, 95.0; P = .40), and 0.89 (95% CI: 0.84, 0.98), respectively, for algorithms, and 73.0% (95% CI: 60.7, 82.6), 88.6% (95% CI: 72.4, 95.8), and 0.85 (95% CI: 0.78, 0.97), respectively, for readers. Conclusion Machine learning (ML) algorithms that demonstrate a stand-alone application in mammographic screening workflows achieve or even exceed human reader detection performance and improve efficiency. However, this evidence is from a small number of retrospective studies. Therefore, further rigorous independent external prospective testing of ML algorithms to assess performance at preassigned thresholds is required to support these claims. ©RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Whitman and Moseley in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
xiner完成签到 ,获得积分10
2秒前
2秒前
小小徐发布了新的文献求助10
4秒前
十字勋章完成签到,获得积分10
4秒前
爆闪小鸡爪完成签到 ,获得积分10
7秒前
7秒前
8秒前
9秒前
灿烂完成签到,获得积分10
9秒前
LZH完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
14秒前
科研通AI2S应助搞怪的人龙采纳,获得10
14秒前
潇洒的灵萱完成签到,获得积分10
14秒前
zasideler完成签到,获得积分10
15秒前
华仔应助yh3204采纳,获得10
15秒前
xiner发布了新的文献求助10
16秒前
黄婷婷完成签到 ,获得积分10
16秒前
CodeCraft应助杜仲采纳,获得10
17秒前
17秒前
达进发布了新的文献求助10
17秒前
zmuzhang2019发布了新的文献求助10
18秒前
Morri发布了新的文献求助10
18秒前
zuiqiu发布了新的文献求助10
19秒前
20秒前
22秒前
23秒前
zoe完成签到,获得积分10
23秒前
余方阳应助zzd12318采纳,获得10
24秒前
24秒前
咿咿呀呀完成签到,获得积分10
24秒前
SHL完成签到,获得积分10
25秒前
Iuhob完成签到,获得积分10
26秒前
李健应助Morri采纳,获得10
27秒前
27秒前
田様应助好好想想采纳,获得10
27秒前
深情安青应助Dasiliy采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148139
求助须知:如何正确求助?哪些是违规求助? 2799228
关于积分的说明 7833916
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307237
科研通“疑难数据库(出版商)”最低求助积分说明 628119
版权声明 601655