Machine Learning for Workflow Applications in Screening Mammography: Systematic Review and Meta-Analysis

医学 急诊分诊台 荟萃分析 检查表 梅德林 医学物理学 接收机工作特性 工作流程 乳腺摄影术 机器学习 人工智能 协议(科学) 系统回顾 内科学 急诊医学 病理 数据库 计算机科学 心理学 认知心理学 法学 替代医学 乳腺癌 癌症 政治学
作者
Sarah Hickman,Ramona Woitek,Elizabeth Le,Yu Ri Im,Carina Mouritsen Luxhøj,Angelica I. Avilés-Rivero,Gabrielle Baxter,James Mackay,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 88-104 被引量:51
标识
DOI:10.1148/radiol.2021210391
摘要

Background Advances in computer processing and improvements in data availability have led to the development of machine learning (ML) techniques for mammographic imaging. Purpose To evaluate the reported performance of stand-alone ML applications for screening mammography workflow. Materials and Methods Ovid Embase, Ovid Medline, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science literature databases were searched for relevant studies published from January 2012 to September 2020. The study was registered with the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42019156016). Stand-alone technology was defined as a ML algorithm that can be used independently of a human reader. Studies were quality assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 and the Prediction Model Risk of Bias Assessment Tool, and reporting was evaluated using the Checklist for Artificial Intelligence in Medical Imaging. A primary meta-analysis included the top-performing algorithm and corresponding reader performance from which pooled summary estimates for the area under the receiver operating characteristic curve (AUC) were calculated using a bivariate model. Results Fourteen articles were included, which detailed 15 studies for stand-alone detection (n = 8) and triage (n = 7). Triage studies reported that 17%–91% of normal mammograms identified could be read by adapted screening, while “missing” an estimated 0%–7% of cancers. In total, an estimated 185 252 cases from three countries with more than 39 readers were included in the primary meta-analysis. The pooled sensitivity, specificity, and AUC was 75.4% (95% CI: 65.6, 83.2; P = .11), 90.6% (95% CI: 82.9, 95.0; P = .40), and 0.89 (95% CI: 0.84, 0.98), respectively, for algorithms, and 73.0% (95% CI: 60.7, 82.6), 88.6% (95% CI: 72.4, 95.8), and 0.85 (95% CI: 0.78, 0.97), respectively, for readers. Conclusion Machine learning (ML) algorithms that demonstrate a stand-alone application in mammographic screening workflows achieve or even exceed human reader detection performance and improve efficiency. However, this evidence is from a small number of retrospective studies. Therefore, further rigorous independent external prospective testing of ML algorithms to assess performance at preassigned thresholds is required to support these claims. ©RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Whitman and Moseley in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到 ,获得积分10
刚刚
生气的鸡蛋完成签到,获得积分10
1秒前
DCH发布了新的文献求助10
2秒前
pluto应助紧张的发带采纳,获得20
4秒前
4秒前
充电宝应助weiyichen采纳,获得10
5秒前
dingding完成签到,获得积分10
5秒前
6秒前
思源应助drtianyunhong采纳,获得10
6秒前
海豹发布了新的文献求助10
8秒前
9秒前
安静的忆文完成签到,获得积分10
9秒前
10秒前
11秒前
Lucas应助薛定谔采纳,获得10
12秒前
青ZZZZ发布了新的文献求助10
13秒前
壮观以松发布了新的文献求助10
13秒前
西哥发布了新的文献求助10
14秒前
DCH完成签到,获得积分10
15秒前
海豹完成签到,获得积分10
15秒前
欣2233发布了新的文献求助10
15秒前
18秒前
19秒前
slz发布了新的文献求助10
20秒前
20秒前
小柒应助科研通管家采纳,获得10
21秒前
nebula应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
小柒应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
22秒前
Flynn发布了新的文献求助10
23秒前
24秒前
sdadsa发布了新的文献求助10
25秒前
伶俐如冰发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745759
求助须知:如何正确求助?哪些是违规求助? 3288685
关于积分的说明 10060202
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649967
邀请新用户注册赠送积分活动 785636
科研通“疑难数据库(出版商)”最低求助积分说明 751204