法拉第效率
材料科学
阴极
离子
电化学
锂(药物)
接口(物质)
纳米技术
化学工程
工程物理
电极
复合材料
物理化学
化学
内分泌学
毛细管作用
有机化学
工程类
医学
毛细管数
作者
Weibin Guo,Chenying Zhang,Yinggan Zhang,Liang Lin,Wei He,Qingshui Xie,Baisheng Sa,Laisen Wang,Dong‐Liang Peng
标识
DOI:10.1002/adma.202103173
摘要
Abstract Li‐rich Mn‐based cathode materials (LRMs) are potential cathode materials for high energy density lithium‐ion batteries. However, low initial Coulombic efficiency (ICE) severely hinders the commercialization of LRM. Herein, a facile oleic acid‐assisted interface engineering is put forward to precisely control the ICE, enhance reversible capacity and rate performance of LRM effectively. As a result, the ICE of LRM can be precisely adjusted from 84.1% to 100.7%, and a very high specific capacity of 330 mAh g −1 at 0.1 C, as well as outstanding rate capability with a fascinating specific capacity of 250 mAh g −1 at 5 C, are harvested. Theoretical calculations reveal that the introduced cation/anion double defects can reduce the diffusion barrier of Li + ions, and in situ surface reconstruction layer can induce a self‐built‐in electric field to stabilize the surface lattice oxygen. Moreover, this facile interface engineering is universal and can enhance the ICEs of other kinds of LRM effectively. This work provides a valuable new idea for improving the comprehensive electrochemical performance of LRM through multistrategy collaborative interface engineering technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI