亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening

宫颈癌 棱锥(几何) 计算机科学 人工智能 特征(语言学) 卷积神经网络 灵敏度(控制系统) 阴道镜检查 宫颈癌筛查 细胞学 医学 模式识别(心理学) 癌症 病理 数学 内科学 工程类 哲学 语言学 电子工程 几何学
作者
Lei Cao,Jinying Yang,Zhiwei Rong,Lulu Li,Bairong Xia,Chong You,Ge Lou,Lei Jiang,Chun Du,Hongxue Meng,Wenjie Wang,Meng Wang,Kang Li,Yan Hou
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102197-102197 被引量:51
标识
DOI:10.1016/j.media.2021.102197
摘要

Early detection of abnormal cervical cells in cervical cancer screening increases the chances of timely treatment. But manual detection requires experienced pathologists and is time-consuming and error prone. Previously, some methods have been proposed for automated abnormal cervical cell detection, whose performance yet remained debatable. Here, we develop an attention feature pyramid network (AttFPN) for automatic abnormal cervical cell detection in cervical cytology images to assist pathologists to make a more accurate diagnosis. Our proposed method consists of two main components. First, an attention module mimicking the way pathologists reading a cervical cytology image. It learns what features to emphasize or suppress by refining extracted features effectively. Second, a multi-scale region-based feature fusion network guided by clinical knowledge to fuse the refined features for detecting abnormal cervical cells at different scales. The region proposals in the multi-scale network are designed according to the clinical knowledge about size and shape distribution of real abnormal cervical cells. Our method, trained and validated with 7030 annotated cervical cytology images, performs better than the state of art deep learning-based methods. The overall sensitivity, specificity, accuracy, and AUC of an independent testing dataset with 3970 cervical cytology images is 95.83%, 94.81%, 95.08% and 0.991, respectively, which is comparable to that of an experienced pathologist with 10 years of experience. Besides, we further validated our method on an external dataset with 110 cases and 35,013 images from a different organization, the case-level sensitivity, specificity, accuracy, and AUC is 91.30%, 90.62%, 90.91% and 0.934, respectively. Average diagnostic time of our method is 0.04s per image, which is much quicker than the average time of pathologists (14.83s per image). Thus, our AttFPN is effective and efficient in cervical cancer screening, and improvement of clinical workflows for the benefit of potential patients. Our code is available at https://github.com/cl2227619761/TCT_Detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
乐观海云完成签到 ,获得积分10
12秒前
dpul发布了新的文献求助10
14秒前
大力黑米完成签到 ,获得积分10
21秒前
26秒前
dpul发布了新的文献求助10
33秒前
oscar完成签到,获得积分10
46秒前
Jasper应助科研通管家采纳,获得10
49秒前
58秒前
1分钟前
1分钟前
陆浩学化学完成签到 ,获得积分10
1分钟前
跳跃卿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
mmyhn发布了新的文献求助10
2分钟前
失眠的筝发布了新的文献求助10
2分钟前
ASHhan111完成签到,获得积分10
2分钟前
朝露由希发布了新的文献求助10
2分钟前
Ava应助朝露由希采纳,获得30
2分钟前
4分钟前
4分钟前
mmyhn发布了新的文献求助10
4分钟前
4分钟前
4分钟前
mmyhn发布了新的文献求助10
4分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
光亮念文发布了新的文献求助10
4分钟前
君寻完成签到 ,获得积分10
4分钟前
mmyhn发布了新的文献求助10
5分钟前
光亮念文完成签到,获得积分10
5分钟前
5分钟前
5分钟前
胜天半子完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Ainsely发布了新的文献求助10
5分钟前
小蘑菇应助lxy采纳,获得10
6分钟前
xx发布了新的文献求助10
6分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371238
求助须知:如何正确求助?哪些是违规求助? 2989477
关于积分的说明 8735785
捐赠科研通 2672634
什么是DOI,文献DOI怎么找? 1464163
科研通“疑难数据库(出版商)”最低求助积分说明 677409
邀请新用户注册赠送积分活动 668693