Cobalt-Catalyzed Diastereo- and Enantioselective Reductive Allyl Additions to Aldehydes with Allylic Alcohol Derivatives via Allyl Radical Intermediates
对映选择合成
化学
烯丙基重排
烯丙醇
钴
酒
催化作用
有机化学
烯丙醇
作者
Lei Wang,Lifan Wang,Mingxia Li,Qinglei Chong,Fanke Meng
Catalytic generation of ambiphilic π-allyl–metal complexes and their utility in enantioselective transformations constitutes a powerful approach for introduction of allyl groups to a molecule. Herein an unprecedented cobalt-catalyzed highly site-, diastereo-, and enantioselective protocol for stereoselective formation of nucleophilic allyl–Co(II) complexes followed by addition to aldehydes is presented. The reaction features diastereo- and enantioconvergent conversion of easily accessible allylic alcohol derivatives to diversified enantioenriched homoallylic alcohols with a remarkably broad scope of allyl groups that can be introduced. Mechanistic studies indicated that allyl radical intermediates were involved in this process. These new discoveries establish a new strategy for development of enantioselective transformations through capture of radicals by chiral Co complexes, pushing forward the frontier of Co complexes for enantioselective catalysis.