自愈水凝胶
材料科学
聚电解质
韧性
模数
抗压强度
复合材料
聚合物
高分子化学
作者
Xiaohui Li,Chenjue Tang,Di Liu,Zhefan Yuan,Hsiang‐Chieh Hung,Sijin Luozhong,Wenchao Gu,Kan Wu,Shaoyi Jiang
标识
DOI:10.1002/adma.202102479
摘要
Abstract Zwitterionic hydrogels have received great attention due to their excellent nonfouling and biocompatible properties, but they suffer from weak mechanical strength in the saline environments important for biomedical and engineering applications due to the “anti‐polyelectrolyte” effect. Conventional strategies to introduce hydrophobic or non‐zwitterionic components to increase mechanical strength compromise their nonfouling properties. Here, a highly effective strategy is reported to achieve both high mechanical strength and excellent nonfouling properties by constructing a pure zwitterionic triple‐network (ZTN) hydrogel. The strong electrostatic interaction and network entanglement within the triple‐network structure can effectively dissipate energy to toughen the hydrogel and achieve high strength, toughness, and stiffness in saline environments (compressive fracture stress 18.2 ± 1.4 MPa, toughness 1.62 ± 0.03 MJ m –3 , and modulus 0.66 ± 0.03 MPa in seawater environments). Moreover, the ZTN hydrogel is shown to strongly resist the attachment of proteins, bacteria, and cells. The results provide a fundamental understanding to guide the design of tough nonfouling zwitterionic hydrogels for a broad range of applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI