Altered Structural Brain Networks in Refractory and Nonrefractory Idiopathic Generalized Epilepsy

耐火材料(行星科学) 特发性全身性癫痫 免疫球蛋白E 癫痫 磁共振弥散成像 医学 磁共振成像 神经科学 心理学 免疫学 物理 放射科 天体生物学 抗体
作者
Andrea McKavanagh,Barbara A. K. Kreilkamp,Yachin Chen,Christine Denby,Martyn Bracewell,Kumar Das,Christophe de Bézenac,Anthony G Marson,Peter N. Taylor,Simon S. Keller
出处
期刊:Brain connectivity [Mary Ann Liebert, Inc.]
卷期号:12 (6): 549-560 被引量:14
标识
DOI:10.1089/brain.2021.0035
摘要

Introduction: Idiopathic generalized epilepsy (IGE) is a collection of generalized nonlesional epileptic network disorders. Around 20–40% of patients with IGE are refractory to antiseizure medication, and mechanisms underlying refractoriness are poorly understood. Here, we characterize structural brain network alterations and determine whether network alterations differ between patients with refractory and nonrefractory IGE. Methods: Thirty-three patients with IGE (10 nonrefractory and 23 refractory) and 39 age- and sex-matched healthy controls were studied. Network nodes were segmented from T1-weighted images, while connections between these nodes (edges) were reconstructed from diffusion magnetic resonance imaging (MRI). Diffusion networks of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and streamline count (Count) were studied. Differences between all patients, refractory, nonrefractory, and control groups were computed using network-based statistics. Nodal volume differences between groups were computed using Cohen's d effect size calculation. Results: Patients had significantly decreased bihemispheric FA and Count networks and increased MD and RD networks compared with controls. Alterations in network architecture, with respect to controls, differed depending on treatment outcome, including predominant FA network alterations in refractory IGE and increased nodal volume in nonrefractory IGE. Diffusion MRI networks were not influenced by nodal volume. Discussion: Although a nonlesional disorder, patients with IGE have bihemispheric structural network alterations that may differ between patients with refractory and nonrefractory IGE. Given that distinct nodal volume and FA network alterations were observed between treatment outcome groups, a multifaceted network analysis may be useful for identifying imaging biomarkers of refractory IGE. Although it is accepted that epilepsy is a network disorder, few studies have prospectively recruited patients with clear refractory and nonrefractory idiopathic generalized epilepsy (IGE) with a goal to identify magnetic resonance imaging (MRI) markers of pharmacoresistance. By showing that patients with refractory and nonrefractory IGE have different patterns of diffusion MRI networks and nodal volume alterations with respect to controls, we suggest that imaging analysis of structural networks may have the potential to identify unique biomarkers of treatment outcome. Reliable imaging markers of pharmacoresistance could inform the treatment pathway for many patients with epilepsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁为沙发布了新的文献求助10
1秒前
S.S.N完成签到 ,获得积分10
1秒前
2秒前
songjin发布了新的文献求助10
2秒前
猕猴桃完成签到,获得积分10
2秒前
2秒前
2秒前
ESC惠子子子子子完成签到 ,获得积分10
3秒前
LordRedScience完成签到,获得积分10
4秒前
生动的战斗机完成签到,获得积分10
5秒前
夏青荷发布了新的文献求助10
6秒前
科目三应助细心青烟采纳,获得10
6秒前
小锂故完成签到,获得积分10
7秒前
包谷冬发布了新的文献求助10
7秒前
天天快乐应助橘子采纳,获得30
7秒前
hhhh发布了新的文献求助10
7秒前
8秒前
卡农完成签到,获得积分10
9秒前
9秒前
桃花不用开了完成签到 ,获得积分10
9秒前
jzyy完成签到 ,获得积分10
9秒前
科研小蔡发布了新的文献求助30
9秒前
9秒前
友好的含雁完成签到,获得积分10
9秒前
10秒前
11秒前
NexusExplorer应助mmxx采纳,获得10
11秒前
和尘同光发布了新的文献求助10
11秒前
剑指东方是为谁应助VVV采纳,获得10
12秒前
勤奋的夏蓉完成签到,获得积分10
12秒前
魏煜佳完成签到,获得积分10
12秒前
远方完成签到,获得积分10
13秒前
13秒前
科研通AI5应助XX采纳,获得10
13秒前
13秒前
14秒前
疯丫头发布了新的文献求助10
15秒前
222发布了新的文献求助10
16秒前
狂野的河马完成签到,获得积分10
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736925
求助须知:如何正确求助?哪些是违规求助? 3280839
关于积分的说明 10021396
捐赠科研通 2997494
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782085
科研通“疑难数据库(出版商)”最低求助积分说明 749707