Hierarchical Adaptive Temporal-Relational Modeling for Stock Trend Prediction

计算机科学 股票市场 波动性(金融) 人工智能 库存(枪支) 机器学习 数据挖掘 计量经济学 理论计算机科学 数学 机械工程 生物 工程类 古生物学
作者
Heyuan Wang,Shun Li,Tengjiao Wang,Jiayi Zheng
标识
DOI:10.24963/ijcai.2021/508
摘要

Stock trend prediction is a challenging task due to the non-stationary dynamics and complex market dependencies. Existing methods usually regard each stock as isolated for prediction, or simply detect their correlations based on a fixed predefined graph structure. Genuinely, stock associations stem from diverse aspects, the underlying relation signals should be implicit in comprehensive graphs. On the other hand, the RNN network is mainly used to model stock historical data, while is hard to capture fine-granular volatility patterns implied in different time spans. In this paper, we propose a novel Hierarchical Adaptive Temporal-Relational Network (HATR) to characterize and predict stock evolutions. By stacking dilated causal convolutions and gating paths, short- and long-term transition features are gradually grasped from multi-scale local compositions of stock trading sequences. Particularly, a dual attention mechanism with Hawkes process and target-specific query is proposed to detect significant temporal points and scales conditioned on individual stock traits. Furthermore, we develop a multi-graph interaction module which consolidates prior domain knowledge and data-driven adaptive learning to capture interdependencies among stocks. All components are integrated seamlessly in a unified end-to-end framework. Experiments on three real-world stock market datasets validate the effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey发布了新的文献求助10
刚刚
5秒前
男研选手完成签到,获得积分10
5秒前
wulalala发布了新的文献求助10
6秒前
乐乐应助陈成采纳,获得10
6秒前
77完成签到,获得积分20
6秒前
平常的芝麻完成签到,获得积分10
6秒前
ok完成签到,获得积分10
7秒前
顾矜应助王贺帅采纳,获得10
7秒前
SYLH应助会飞的鱼采纳,获得10
8秒前
9秒前
饺子完成签到,获得积分10
11秒前
11秒前
称心花生发布了新的文献求助20
11秒前
13秒前
Magical发布了新的文献求助10
14秒前
SYLH应助zhw采纳,获得10
14秒前
旺仔同学完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
lilei完成签到 ,获得积分10
18秒前
毛豆发布了新的文献求助10
20秒前
20秒前
顾矜应助木木VV采纳,获得10
21秒前
LaTeXer应助乐观小之采纳,获得3000
22秒前
思源应助十一采纳,获得10
22秒前
虚幻初之发布了新的文献求助10
22秒前
23秒前
23秒前
传奇3应助开心的山兰采纳,获得10
23秒前
web123完成签到,获得积分10
24秒前
陈成发布了新的文献求助10
24秒前
meat12应助南辰采纳,获得10
24秒前
称心花生完成签到,获得积分10
24秒前
25秒前
xu完成签到,获得积分20
26秒前
星辰大海应助77采纳,获得10
27秒前
一一发布了新的文献求助10
28秒前
lizz发布了新的文献求助10
29秒前
高分求助中
A Comprehensive Review on the Chemical Composition, Pharmacology and Clinical Applications of Ganoderma 3000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032