数据流
计算机科学
并行计算
数据流体系结构
线程(计算)
数据结构
线程(蛋白质序列)
库达
数据流图
散列函数
计算机体系结构
编译程序
流式处理
执行模型
建筑
程序设计语言
数据库
物理
蛋白质结构
核磁共振
作者
Matthew Vilim,Alexander Rucker,Kunle Olukotun
标识
DOI:10.1109/isca52012.2021.00039
摘要
Data analytics pipelines increasingly rely on databases to select, filter, and pre-process reams of data. These databases use data structures with irregular control flow like trees and hash tables which map poorly to existing database accelerators, leaving architects with a choice between CPUS— with stagnant performance—or accelerators that handle this complexity by relying on simpler but asymptotically sub-optimal algorithms.To bridge this gap, we propose Aurochs: a reconfigurable dataflow accelerator (RDA) that matches a CPU asymptotically but outperforms it by over 100 × on constant factors. We introduce a threading model for vector dataflow accelerators that extracts massive parallelism from irregular data structures using lightweight thread contexts. To implement this model, we add only a sparse scratchpad to an existing database accelerator— increasing area by 5 %. We reformulate common data structures using dataflow threads and evaluate Aurochs on ridesharing queries—outperforming a GPU by 8 ×.
科研通智能强力驱动
Strongly Powered by AbleSci AI