Predicting the Impact of Formation Protocols on Battery Lifetime Immediately After Manufacturing

电池(电) 可靠性工程 计算机科学 汽车工程
作者
Andrew Weng,Peyman Mohtat,Peter M. Attia,Valentin Sulzer,Suhak Lee,Greg Less,Anna G. Stefanopoulou
出处
期刊:Social Science Research Network
标识
DOI:10.2139/ssrn.3900211
摘要

Increasing the speed of battery formation can significantly lower lithium ion battery manufacturing costs. However, adopting faster formation protocols in real manufacturing settings is challenging due to a lack of inexpensive, rapid diagnostic signals that can inform possible impacts to long term battery lifetime. In this work, we identify the cell resistance measured at low states of charge as an early-life diagnostic feature for screening new formation protocols. We show that this signal correlates to cycle life and improves the accuracy of data-driven battery lifetime prediction models. The signal is obtainable at the end of the manufacturing line, takes seconds to acquire, and does not add any additional capital cost. We explore a physical connection between this resistance signal and the amount of lithium consumed during formation, which suggests that the technique may be broadly applicable for evaluating any battery manufacturing process or design change that could impact the total lithium consumed during formation. This work demonstrates that carefully engineered, simple features can provide useful diagnostics and prognostics for battery degradation at the beginning of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助SZH采纳,获得10
1秒前
小马甲应助豆豆采纳,获得10
1秒前
1秒前
华无心完成签到 ,获得积分10
1秒前
hihi发布了新的文献求助10
2秒前
2秒前
3秒前
FashionBoy应助十六采纳,获得10
3秒前
3秒前
innocent发布了新的文献求助10
3秒前
ZJJ静发布了新的文献求助10
3秒前
lanlan完成签到 ,获得积分10
4秒前
无情妙竹发布了新的文献求助10
6秒前
搞学术的成功女人完成签到,获得积分10
6秒前
Paeonolmite发布了新的文献求助10
7秒前
JYH12138完成签到,获得积分10
7秒前
7秒前
王羊补牢发布了新的文献求助10
8秒前
8秒前
8秒前
研友_VZG7GZ应助kiska采纳,获得10
9秒前
9秒前
9秒前
隐形曼青应助yn采纳,获得10
10秒前
10秒前
长檐完成签到,获得积分10
10秒前
GUO完成签到,获得积分10
10秒前
打打应助半个柚子采纳,获得10
11秒前
11秒前
12秒前
小李完成签到,获得积分10
12秒前
12秒前
wanci应助黄少天采纳,获得10
13秒前
上官子默完成签到,获得积分10
13秒前
苏曼青发布了新的文献求助10
14秒前
LLT完成签到,获得积分10
14秒前
yy完成签到,获得积分10
14秒前
无情妙竹完成签到,获得积分10
14秒前
张张发布了新的文献求助10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734777
求助须知:如何正确求助?哪些是违规求助? 3278715
关于积分的说明 10010876
捐赠科研通 2995383
什么是DOI,文献DOI怎么找? 1643405
邀请新用户注册赠送积分活动 781153
科研通“疑难数据库(出版商)”最低求助积分说明 749285