化学
纳米团簇
电子顺磁共振
插层(化学)
电子结构
表面状态
化学物理
结晶学
无机化学
曲面(拓扑)
计算化学
核磁共振
物理
几何学
数学
有机化学
作者
Meng-Xia Ma,Xue-Li Ma,Guang‐Ming Liang,Xue-Tao Shen,Qing‐Ling Ni,Liu-Cheng Gui,Xiu‐Jian Wang,Siyu Huang,Shiming Li
摘要
The controlling synthesis of novel nanoclusters of noble metals (Au, Ag) and the determination of their atomically precise structures provide opportunities for investigating their specific properties and applications. Here we report a novel silver nanocluster [Ag307Cl62(SPhtBu)110] (Ag307) whose structure is determined by X-ray single crystal diffraction. The structure analysis shows that nanocluster Ag307 contains a Ag167 core, a surface shell of [Ag140Cl2S110], and a Cl60 intermediate layer located between Ag167 and [Ag140Cl2S110]. It is a first example that such many chlorides are intercalated into a Ag nanocluster. Chlorides are released in situ from solvent CHCl3. Nanocluster Ag307 exhibits superstability. Differential pulse voltammetry experiment reveals that Ag307 has continuous charging/discharging behavior with a capacitance value of 1.39 aF, while the Ag307 has a surface plasmonic feature. These characteristics show that Ag307 is of metallic behavior. However, its electron paramagnetic resonance (EPR) spectra display a spin magnetic behavior which could be originated from the unpassivated dangling bonds of surface atoms. The direct capture of EPR signals can be attributed to the Cl– intercalating layer which partly suppresses the electronic interactions between core and surface atoms, resulting in the relatively independent electronic states for core and surface atoms.
科研通智能强力驱动
Strongly Powered by AbleSci AI