已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mitigating Demographic Bias in Facial Datasets with Style-Based Multi-attribute Transfer

计算机科学 集合(抽象数据类型) 人工智能 机器学习 面子(社会学概念) 代表(政治) 乘法函数 多线性映射 数据挖掘 模式识别(心理学) 数学 社会学 数学分析 政治 程序设计语言 法学 纯数学 社会科学 政治学
作者
Markos Georgopoulos,James Oldfield,Mihalis A. Nicolaou,Yannis Panagakis,Maja Pantić
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:129 (7): 2288-2307 被引量:47
标识
DOI:10.1007/s11263-021-01448-w
摘要

Abstract Deep learning has catalysed progress in tasks such as face recognition and analysis, leading to a quick integration of technological solutions in multiple layers of our society. While such systems have proven to be accurate by standard evaluation metrics and benchmarks, a surge of work has recently exposed the demographic bias that such algorithms exhibit–highlighting that accuracy does not entail fairness . Clearly, deploying biased systems under real-world settings can have grave consequences for affected populations. Indeed, learning methods are prone to inheriting, or even amplifying the bias present in a training set, manifested by uneven representation across demographic groups. In facial datasets, this particularly relates to attributes such as skin tone , gender , and age . In this work, we address the problem of mitigating bias in facial datasets by data augmentation. We propose a multi-attribute framework that can successfully transfer complex, multi-scale facial patterns even if these belong to underrepresented groups in the training set. This is achieved by relaxing the rigid dependence on a single attribute label, and further introducing a tensor-based mixing structure that captures multiplicative interactions between attributes in a multilinear fashion. We evaluate our method with an extensive set of qualitative and quantitative experiments on several datasets, with rigorous comparisons to state-of-the-art methods. We find that the proposed framework can successfully mitigate dataset bias, as evinced by extensive evaluations on established diversity metrics, while significantly improving fairness metrics such as equality of opportunity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助QDL采纳,获得10
刚刚
香蕉觅云应助己凡采纳,获得10
1秒前
搜集达人应助己凡采纳,获得10
1秒前
CipherSage应助己凡采纳,获得10
1秒前
酷波er应助己凡采纳,获得10
1秒前
上官若男应助己凡采纳,获得10
1秒前
慕青应助己凡采纳,获得10
1秒前
李健应助己凡采纳,获得10
1秒前
CipherSage应助己凡采纳,获得10
1秒前
无花果应助己凡采纳,获得10
1秒前
快乐排骨汤完成签到 ,获得积分10
2秒前
伊蕾娜完成签到 ,获得积分10
3秒前
chen完成签到 ,获得积分10
3秒前
wjx完成签到 ,获得积分10
6秒前
6秒前
MAKEYF完成签到 ,获得积分10
8秒前
tao完成签到 ,获得积分10
9秒前
LU完成签到 ,获得积分10
9秒前
不饿饭完成签到,获得积分10
10秒前
深情安青应助己凡采纳,获得10
12秒前
所所应助己凡采纳,获得10
12秒前
NexusExplorer应助己凡采纳,获得10
12秒前
SciGPT应助己凡采纳,获得10
12秒前
Ava应助己凡采纳,获得10
12秒前
科研通AI2S应助己凡采纳,获得10
12秒前
我是站长才怪应助己凡采纳,获得10
13秒前
我是站长才怪应助己凡采纳,获得10
13秒前
JamesPei应助己凡采纳,获得10
13秒前
NexusExplorer应助己凡采纳,获得10
13秒前
雍雍完成签到 ,获得积分10
17秒前
在水一方应助黄小慧采纳,获得10
17秒前
超人不会飞完成签到,获得积分10
17秒前
Sunri完成签到,获得积分10
22秒前
yphhhp完成签到 ,获得积分10
22秒前
xie完成签到 ,获得积分10
23秒前
nk完成签到 ,获得积分10
25秒前
晓雨发布了新的文献求助10
26秒前
27秒前
爱静静完成签到,获得积分0
27秒前
科研通AI2S应助徐徐图之采纳,获得10
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268517
求助须知:如何正确求助?哪些是违规求助? 2908048
关于积分的说明 8344221
捐赠科研通 2578335
什么是DOI,文献DOI怎么找? 1401979
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634372