Mitigating Demographic Bias in Facial Datasets with Style-Based Multi-attribute Transfer

计算机科学 集合(抽象数据类型) 人工智能 机器学习 面子(社会学概念) 代表(政治) 乘法函数 多线性映射 数据挖掘 模式识别(心理学) 数学 数学分析 社会科学 社会学 政治 政治学 纯数学 法学 程序设计语言
作者
Markos Georgopoulos,James Oldfield,Mihalis A. Nicolaou,Yannis Panagakis,Maja Pantić
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:129 (7): 2288-2307 被引量:47
标识
DOI:10.1007/s11263-021-01448-w
摘要

Abstract Deep learning has catalysed progress in tasks such as face recognition and analysis, leading to a quick integration of technological solutions in multiple layers of our society. While such systems have proven to be accurate by standard evaluation metrics and benchmarks, a surge of work has recently exposed the demographic bias that such algorithms exhibit–highlighting that accuracy does not entail fairness . Clearly, deploying biased systems under real-world settings can have grave consequences for affected populations. Indeed, learning methods are prone to inheriting, or even amplifying the bias present in a training set, manifested by uneven representation across demographic groups. In facial datasets, this particularly relates to attributes such as skin tone , gender , and age . In this work, we address the problem of mitigating bias in facial datasets by data augmentation. We propose a multi-attribute framework that can successfully transfer complex, multi-scale facial patterns even if these belong to underrepresented groups in the training set. This is achieved by relaxing the rigid dependence on a single attribute label, and further introducing a tensor-based mixing structure that captures multiplicative interactions between attributes in a multilinear fashion. We evaluate our method with an extensive set of qualitative and quantitative experiments on several datasets, with rigorous comparisons to state-of-the-art methods. We find that the proposed framework can successfully mitigate dataset bias, as evinced by extensive evaluations on established diversity metrics, while significantly improving fairness metrics such as equality of opportunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
Maestro_S应助科研通管家采纳,获得10
刚刚
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
款冬发布了新的文献求助10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
yuyu完成签到,获得积分10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
咖飞完成签到,获得积分10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得30
2秒前
zyueyun发布了新的文献求助10
2秒前
zhang完成签到 ,获得积分10
2秒前
鲤鱼发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
打打应助高大的未来采纳,获得10
4秒前
浮游应助FK7采纳,获得10
4秒前
时尚飞阳完成签到,获得积分10
4秒前
5秒前
纳米果发布了新的文献求助10
5秒前
5秒前
624794951发布了新的文献求助30
5秒前
orixero应助GM采纳,获得10
5秒前
书是人类进步的阶梯完成签到,获得积分10
7秒前
科研通AI5应助笑点低的羊采纳,获得10
7秒前
shinian发布了新的文献求助10
7秒前
琳子的研学之路完成签到,获得积分10
7秒前
传统的纸飞机完成签到 ,获得积分10
8秒前
嘟哈克发布了新的文献求助10
8秒前
梦心发布了新的文献求助10
8秒前
何熙熙完成签到,获得积分10
8秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213567
求助须知:如何正确求助?哪些是违规求助? 4389354
关于积分的说明 13666572
捐赠科研通 4250392
什么是DOI,文献DOI怎么找? 2332050
邀请新用户注册赠送积分活动 1329737
关于科研通互助平台的介绍 1283341