Mitigating Demographic Bias in Facial Datasets with Style-Based Multi-attribute Transfer

计算机科学 集合(抽象数据类型) 人工智能 机器学习 面子(社会学概念) 代表(政治) 乘法函数 多线性映射 数据挖掘 模式识别(心理学) 数学 数学分析 社会科学 社会学 政治 政治学 纯数学 法学 程序设计语言
作者
Markos Georgopoulos,James Oldfield,Mihalis A. Nicolaou,Yannis Panagakis,Maja Pantić
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:129 (7): 2288-2307 被引量:47
标识
DOI:10.1007/s11263-021-01448-w
摘要

Abstract Deep learning has catalysed progress in tasks such as face recognition and analysis, leading to a quick integration of technological solutions in multiple layers of our society. While such systems have proven to be accurate by standard evaluation metrics and benchmarks, a surge of work has recently exposed the demographic bias that such algorithms exhibit–highlighting that accuracy does not entail fairness . Clearly, deploying biased systems under real-world settings can have grave consequences for affected populations. Indeed, learning methods are prone to inheriting, or even amplifying the bias present in a training set, manifested by uneven representation across demographic groups. In facial datasets, this particularly relates to attributes such as skin tone , gender , and age . In this work, we address the problem of mitigating bias in facial datasets by data augmentation. We propose a multi-attribute framework that can successfully transfer complex, multi-scale facial patterns even if these belong to underrepresented groups in the training set. This is achieved by relaxing the rigid dependence on a single attribute label, and further introducing a tensor-based mixing structure that captures multiplicative interactions between attributes in a multilinear fashion. We evaluate our method with an extensive set of qualitative and quantitative experiments on several datasets, with rigorous comparisons to state-of-the-art methods. We find that the proposed framework can successfully mitigate dataset bias, as evinced by extensive evaluations on established diversity metrics, while significantly improving fairness metrics such as equality of opportunity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHAO发布了新的文献求助10
1秒前
彭于晏应助机智笑南采纳,获得10
2秒前
tt发布了新的文献求助10
2秒前
风趣的觅山完成签到 ,获得积分10
2秒前
明亮棉花糖完成签到 ,获得积分10
3秒前
pzh发布了新的文献求助10
3秒前
卷毛发布了新的文献求助10
3秒前
充电宝应助谦让的傲芙采纳,获得10
4秒前
CodeCraft应助于66采纳,获得10
5秒前
tuyfytjt发布了新的文献求助10
5秒前
东糸容完成签到,获得积分10
5秒前
吴宇杰发布了新的文献求助10
6秒前
袁不评发布了新的文献求助10
6秒前
evvj完成签到,获得积分10
6秒前
噜啦啦发布了新的文献求助30
6秒前
8秒前
8秒前
zzzhujp发布了新的文献求助10
9秒前
浮游应助lee采纳,获得10
9秒前
12秒前
ding应助AAA电池批发顾总采纳,获得10
13秒前
Akim应助王羲之采纳,获得10
13秒前
kk发布了新的文献求助10
13秒前
薛变霞发布了新的文献求助10
13秒前
CodeCraft应助李李李采纳,获得10
13秒前
钉书机机发布了新的文献求助10
13秒前
ZHAO完成签到,获得积分10
14秒前
简单芾发布了新的文献求助10
14秒前
qingjiu发布了新的文献求助10
15秒前
百甲完成签到,获得积分10
15秒前
仁爱曼梅完成签到,获得积分10
18秒前
无花果应助SHC采纳,获得10
19秒前
21秒前
酷波er应助雪糕采纳,获得10
21秒前
22秒前
22秒前
001完成签到,获得积分10
22秒前
24秒前
treasure发布了新的文献求助10
25秒前
kiltorh完成签到,获得积分10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661