重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Mitigating Demographic Bias in Facial Datasets with Style-Based Multi-attribute Transfer

计算机科学 集合(抽象数据类型) 人工智能 机器学习 面子(社会学概念) 代表(政治) 乘法函数 多线性映射 数据挖掘 模式识别(心理学) 数学 数学分析 社会科学 社会学 政治 政治学 纯数学 法学 程序设计语言
作者
Markos Georgopoulos,James Oldfield,Mihalis A. Nicolaou,Yannis Panagakis,Maja Pantić
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:129 (7): 2288-2307 被引量:47
标识
DOI:10.1007/s11263-021-01448-w
摘要

Abstract Deep learning has catalysed progress in tasks such as face recognition and analysis, leading to a quick integration of technological solutions in multiple layers of our society. While such systems have proven to be accurate by standard evaluation metrics and benchmarks, a surge of work has recently exposed the demographic bias that such algorithms exhibit–highlighting that accuracy does not entail fairness . Clearly, deploying biased systems under real-world settings can have grave consequences for affected populations. Indeed, learning methods are prone to inheriting, or even amplifying the bias present in a training set, manifested by uneven representation across demographic groups. In facial datasets, this particularly relates to attributes such as skin tone , gender , and age . In this work, we address the problem of mitigating bias in facial datasets by data augmentation. We propose a multi-attribute framework that can successfully transfer complex, multi-scale facial patterns even if these belong to underrepresented groups in the training set. This is achieved by relaxing the rigid dependence on a single attribute label, and further introducing a tensor-based mixing structure that captures multiplicative interactions between attributes in a multilinear fashion. We evaluate our method with an extensive set of qualitative and quantitative experiments on several datasets, with rigorous comparisons to state-of-the-art methods. We find that the proposed framework can successfully mitigate dataset bias, as evinced by extensive evaluations on established diversity metrics, while significantly improving fairness metrics such as equality of opportunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王娟完成签到 ,获得积分10
1秒前
然而。发布了新的文献求助10
1秒前
1秒前
爱笑的桔子完成签到 ,获得积分10
1秒前
知天易易天难完成签到 ,获得积分10
2秒前
2秒前
认真以寒完成签到,获得积分20
2秒前
李兴起发布了新的文献求助10
2秒前
安静的赛君完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
高兴的羊完成签到,获得积分10
5秒前
AAA发布了新的文献求助20
5秒前
简默完成签到,获得积分10
5秒前
WendyWen发布了新的文献求助100
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
pancake发布了新的文献求助30
6秒前
6秒前
jackie给jackie的求助进行了留言
7秒前
复杂冰淇淋完成签到,获得积分20
7秒前
7秒前
自然月亮完成签到 ,获得积分10
8秒前
myp完成签到,获得积分10
9秒前
9秒前
悲凉的孤萍完成签到,获得积分10
9秒前
脑洞疼应助三年H采纳,获得10
9秒前
Zzhn完成签到,获得积分10
10秒前
Yiran发布了新的文献求助10
10秒前
MM发布了新的文献求助10
10秒前
11秒前
11秒前
遇见发布了新的文献求助10
11秒前
麻花完成签到,获得积分10
11秒前
李健应助复杂冰淇淋采纳,获得10
12秒前
失眠凡英完成签到 ,获得积分10
12秒前
tt发布了新的文献求助10
12秒前
chenying发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516