单克隆抗体
抗体
配体(生物化学)
受体
人血清白蛋白
作者
Yutaka Matsuda,Atis Chakrabarti,Kazutoshi Takahashi,Kei Yamada,Kunio Nakata,Tatsuya Okuzumi,Brian A. Mendelsohn
标识
DOI:10.1016/j.jchromb.2021.122753
摘要
Commercially approved conventional antibody-drug conjugates (ADCs) are produced as heterogeneous mixtures containing a stochastic distribution of payloads decorating the antibody molecules resulting in decreased efficacy and thus lowering their therapeutic index. Control of the DAR and conjugation site in the development of next-generation ADCs is believed to assist in increasing the therapeutic index of these targeted biologics leading to overall enhanced clinical efficacy and reduced toxicity. A chemical site-specific conjugation technology termed AJICAP® allows ADC developers to control both the location and quantity of the payload conjugation to an antibody. Furthermore, this simplified ADC composition enables a streamlined chemical analysis. Here we report the chromatographic separation of site-specific ADCs produced by AJICAP® technology using an analytical affinity chromatography HPLC column containing a recombinant FcγIIIa receptor-ligand immobilized on a non-porous polymer resin (NPR). These HPLC analyses provided visually clear chromatogram results reflecting the heterogeneity of each ADC. The affinity strength was also measured by biolayer interferometry (BLI) and predicted by molecular structure analysis. The results indicate that AJICAP® technology is a promising solution to link hydrophobic payloads to antibodies without compromising antibody receptor function. This study also shows that FcγIIIa-NPR column can be used to characterize site-specific conjugated ADCs compared to ADCs synthesized using conventional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI