Emerging functions of circular RNA in aging

生物 环状RNA 核糖核酸 进化生物学 计算生物学 基因 遗传学
作者
Eunah Kim,Yoon Ki Kim,Seung‐Jae Lee
出处
期刊:Trends in Genetics [Elsevier]
卷期号:37 (9): 819-829 被引量:46
标识
DOI:10.1016/j.tig.2021.04.014
摘要

Circular RNAs (circRNAs) are closed and cyclic RNAs that are widely expressed in eukaryotes and have multiple functions, including interacting with proteins, sponging miRNAs, encoding proteins, and regulating gene expression via binding promoters. The expression patterns and stability of circRNAs have emerged as promising candidate biomarkers of aging and age-associated diseases. The levels of circRNAs generally increase with age in various species and may play roles in aging and cellular senescence. Specifically, ciRS-7/circCDR1as and circSfl are associated with Alzheimer’s disease and fruit fly longevity, respectively. It will be important to identify functional circRNAs to elucidate the underlying mechanisms regarding their roles in aging and/or age-related diseases. Circular RNA (circRNA) is a closed, single-stranded transcript widely detected in eukaryotes. Recent studies indicate that the levels of circRNAs change with age in various tissues in multiple species, ranging from nematodes to mammals. Here we discuss the functional roles of circRNAs in animal aging and longevity. We review studies regarding the differential expression of circRNAs that contributes to cellular senescence and the pathogenesis of aging-associated diseases. We explore the features of aging-associated circRNAs by discussing their potential as biomarkers of aging, tissue specificity, physiological roles, action mechanisms, and evolutionarily conserved characteristics. Our review provides insights into current progress in circRNA research and their significant functions in the aging process. Circular RNA (circRNA) is a closed, single-stranded transcript widely detected in eukaryotes. Recent studies indicate that the levels of circRNAs change with age in various tissues in multiple species, ranging from nematodes to mammals. Here we discuss the functional roles of circRNAs in animal aging and longevity. We review studies regarding the differential expression of circRNAs that contributes to cellular senescence and the pathogenesis of aging-associated diseases. We explore the features of aging-associated circRNAs by discussing their potential as biomarkers of aging, tissue specificity, physiological roles, action mechanisms, and evolutionarily conserved characteristics. Our review provides insights into current progress in circRNA research and their significant functions in the aging process. a kind of alternative splicing of pre-mRNA. A downstream splice donor site is joined with an upstream splice acceptor site to generate a circularized structure of RNA. a measurable molecular indicator of a specific biological or pathological process. (circular RNA) covalently closed, single-stranded RNA produced through backsplicing of pre-mRNA. transcription factor; a member of the forkhead family containing a forkhead DNA-binding domain, which is associated with many cellular processes, including stress responses and aging. a group of proteins that are upregulated by conditions of cellular stress, such as heat shock; comprise an evolutionarily conserved system for organisms to adapt to harmful environments. endocrine signaling pathway that regulates multiple physiological functions, including aging and longevity, in multiple species ranging from nematodes to mammals. short, single-stranded (~22 nucleotides) noncoding RNA that regulates target gene expression through degradation or repressive translation of target mRNA. the ability to bind and sequester a specific miRNA to inhibit its activity. proteins that can bind to single-stranded or double-stranded RNAs through RNA-binding motifs, such as the RNA recognition motif and double-stranded RNA-binding motif. RBPs have important roles in post-transcriptional regulation of RNAs in various biological processes. permanent cell cycle arrest after the reduction of proliferation potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ksharp10完成签到,获得积分10
1秒前
大野发布了新的文献求助10
2秒前
2秒前
2秒前
sda完成签到,获得积分10
2秒前
明理如凡完成签到,获得积分10
3秒前
科研通AI6应助Double采纳,获得10
4秒前
pokexuejiao完成签到,获得积分10
4秒前
李雅欣发布了新的文献求助10
4秒前
完美世界应助分隔符采纳,获得10
4秒前
Fernweh完成签到,获得积分20
5秒前
shouying发布了新的文献求助10
5秒前
夜染完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
huangxiaomei111完成签到,获得积分10
6秒前
6秒前
小落完成签到,获得积分10
7秒前
我是弱智先帮我完成签到,获得积分10
7秒前
李爱国应助叶祥采纳,获得10
7秒前
gyh完成签到,获得积分20
7秒前
王澄橙发布了新的文献求助50
7秒前
邓娅琴发布了新的文献求助10
8秒前
9秒前
彭于晏应助ftyun采纳,获得10
10秒前
Moro完成签到,获得积分10
10秒前
12秒前
大野完成签到,获得积分10
12秒前
繁星背后完成签到 ,获得积分10
12秒前
wei完成签到,获得积分10
12秒前
CipherSage应助憨憨采纳,获得10
13秒前
CipherSage应助gyh采纳,获得10
13秒前
14秒前
科研通AI6应助gkw采纳,获得10
15秒前
锐意发布了新的文献求助10
15秒前
丁森杰发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
科研通AI6应助靓丽的如天采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728