Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system

脑-机接口 计算机科学 运动表象 学习迁移 欧几里德距离 人工智能 分类器(UML) 模式识别(心理学) 频域 试验数据 算法 脑电图 计算机视觉 心理学 精神科 程序设计语言
作者
Minmin Zheng,Banghua Yang,Shouwei Gao,Xia Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102702-102702 被引量:6
标识
DOI:10.1016/j.bspc.2021.102702
摘要

Motor imagery-based brain-computer interface (MI-BCI) is widely considered as the most promising BCI. Non-stationary of EEG data and long BCIs' calibration time are main problems that affect the practicability of MI-BCI. In this paper, we propose a new algorithm, i.e. spatio-time-frequency joint sparse optimization algorithm with transfer learning (STFSTL) to achieve satisfactory classification accuracy with small training set. By introducing artificial bee colony (ABC) algorithm and least absolute shrinkage and selection operator (LASSO), the algorithm optimized parameters in spatial domain, time domain and frequency domain simultaneously. The similarity between data was measured by Euclidean distance. Through instanced-based transfer learning, the source data which was most similar to the target data was selected as the auxiliary data to train the target classifier. We evaluated the performance of the proposed algorithm on three data sets, including a private data set and two public data sets. The classification accuracy of the proposed algorithm with one fifth of the training data was higher than that of five other algorithms. Paired t-test analysis revealed that the accuracy of STFSTL and that of five other algorithms were significantly different. The experimental results suggested that the proposed algorithm with less target data can effectively achieve higher classification accuracy than traditional algorithms. It's likely to have a broad application prospect in MI-BCI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Stranger发布了新的文献求助10
1秒前
likexin完成签到,获得积分10
1秒前
lanlan发布了新的文献求助10
1秒前
慕青应助feng采纳,获得10
2秒前
啊哈哈发布了新的文献求助10
2秒前
2秒前
ZCX发布了新的文献求助10
2秒前
2秒前
EatFish发布了新的文献求助10
3秒前
natural发布了新的文献求助10
3秒前
yiyi完成签到,获得积分10
3秒前
珂儿完成签到,获得积分10
4秒前
楼少博完成签到,获得积分20
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
虚心如蓉关注了科研通微信公众号
5秒前
Criminology34应助wz采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助美丽的海云采纳,获得10
7秒前
儒雅白山发布了新的文献求助10
7秒前
枫asaki发布了新的文献求助10
7秒前
111发布了新的文献求助10
7秒前
7秒前
高大代容发布了新的文献求助10
7秒前
龍Ryu发布了新的文献求助10
8秒前
柯达发布了新的文献求助10
8秒前
8秒前
小鸭子完成签到,获得积分0
8秒前
土豪的易文完成签到,获得积分10
9秒前
尉迟希望应助哈哈采纳,获得10
9秒前
wjx完成签到,获得积分10
9秒前
Jungel完成签到,获得积分0
9秒前
sandy完成签到,获得积分10
9秒前
PCR达人完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710497
求助须知:如何正确求助?哪些是违规求助? 5199402
关于积分的说明 15260984
捐赠科研通 4863101
什么是DOI,文献DOI怎么找? 2610419
邀请新用户注册赠送积分活动 1560773
关于科研通互助平台的介绍 1518409