Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system

脑-机接口 计算机科学 运动表象 学习迁移 欧几里德距离 人工智能 分类器(UML) 模式识别(心理学) 频域 试验数据 算法 脑电图 计算机视觉 心理学 精神科 程序设计语言
作者
Minmin Zheng,Banghua Yang,Shouwei Gao,Xia Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:68: 102702-102702 被引量:6
标识
DOI:10.1016/j.bspc.2021.102702
摘要

Motor imagery-based brain-computer interface (MI-BCI) is widely considered as the most promising BCI. Non-stationary of EEG data and long BCIs' calibration time are main problems that affect the practicability of MI-BCI. In this paper, we propose a new algorithm, i.e. spatio-time-frequency joint sparse optimization algorithm with transfer learning (STFSTL) to achieve satisfactory classification accuracy with small training set. By introducing artificial bee colony (ABC) algorithm and least absolute shrinkage and selection operator (LASSO), the algorithm optimized parameters in spatial domain, time domain and frequency domain simultaneously. The similarity between data was measured by Euclidean distance. Through instanced-based transfer learning, the source data which was most similar to the target data was selected as the auxiliary data to train the target classifier. We evaluated the performance of the proposed algorithm on three data sets, including a private data set and two public data sets. The classification accuracy of the proposed algorithm with one fifth of the training data was higher than that of five other algorithms. Paired t-test analysis revealed that the accuracy of STFSTL and that of five other algorithms were significantly different. The experimental results suggested that the proposed algorithm with less target data can effectively achieve higher classification accuracy than traditional algorithms. It's likely to have a broad application prospect in MI-BCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻梦之完成签到 ,获得积分10
1秒前
2秒前
4秒前
万能图书馆应助猪猪hero采纳,获得10
6秒前
6秒前
热心的沂完成签到,获得积分20
7秒前
7秒前
sjie发布了新的文献求助30
8秒前
9秒前
M旭旭发布了新的文献求助10
10秒前
张成协发布了新的文献求助10
10秒前
胥钦凤发布了新的文献求助10
11秒前
13秒前
kumo完成签到 ,获得积分10
13秒前
汉堡包应助风中的金鱼采纳,获得10
13秒前
13秒前
chengmeng完成签到,获得积分10
13秒前
15秒前
M旭旭完成签到,获得积分10
16秒前
17秒前
冷艳万天发布了新的文献求助10
17秒前
猪猪hero发布了新的文献求助10
18秒前
18秒前
青松关注了科研通微信公众号
19秒前
cece完成签到,获得积分10
20秒前
认真沅完成签到,获得积分10
20秒前
Nichols完成签到,获得积分10
22秒前
xzh发布了新的文献求助10
22秒前
22秒前
也胖完成签到 ,获得积分10
25秒前
Dada应助闪闪的从彤采纳,获得30
27秒前
舒适的淇发布了新的文献求助10
27秒前
27秒前
28秒前
星辰大海应助shark采纳,获得10
29秒前
30秒前
123发布了新的文献求助10
31秒前
31秒前
32秒前
SciGPT应助fugdu采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511