Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system

脑-机接口 计算机科学 运动表象 学习迁移 欧几里德距离 人工智能 分类器(UML) 模式识别(心理学) 频域 试验数据 算法 脑电图 计算机视觉 心理学 精神科 程序设计语言
作者
Minmin Zheng,Banghua Yang,Shouwei Gao,Xia Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102702-102702 被引量:6
标识
DOI:10.1016/j.bspc.2021.102702
摘要

Motor imagery-based brain-computer interface (MI-BCI) is widely considered as the most promising BCI. Non-stationary of EEG data and long BCIs' calibration time are main problems that affect the practicability of MI-BCI. In this paper, we propose a new algorithm, i.e. spatio-time-frequency joint sparse optimization algorithm with transfer learning (STFSTL) to achieve satisfactory classification accuracy with small training set. By introducing artificial bee colony (ABC) algorithm and least absolute shrinkage and selection operator (LASSO), the algorithm optimized parameters in spatial domain, time domain and frequency domain simultaneously. The similarity between data was measured by Euclidean distance. Through instanced-based transfer learning, the source data which was most similar to the target data was selected as the auxiliary data to train the target classifier. We evaluated the performance of the proposed algorithm on three data sets, including a private data set and two public data sets. The classification accuracy of the proposed algorithm with one fifth of the training data was higher than that of five other algorithms. Paired t-test analysis revealed that the accuracy of STFSTL and that of five other algorithms were significantly different. The experimental results suggested that the proposed algorithm with less target data can effectively achieve higher classification accuracy than traditional algorithms. It's likely to have a broad application prospect in MI-BCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27完成签到 ,获得积分20
刚刚
Xu发布了新的文献求助10
刚刚
一棵草完成签到,获得积分10
1秒前
干净问旋完成签到,获得积分10
4秒前
4秒前
爆米花应助李麟采纳,获得10
4秒前
一久便惯完成签到,获得积分10
6秒前
完美世界应助Zoom采纳,获得10
7秒前
7秒前
无花果应助丸子采纳,获得10
8秒前
9秒前
易生发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
机智的曼易完成签到 ,获得积分10
13秒前
哈嘻嘻发布了新的文献求助10
13秒前
lannal发布了新的文献求助10
14秒前
烟雨发布了新的文献求助30
15秒前
殷勤的阑悦完成签到 ,获得积分10
16秒前
英俊的铭应助gz采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得20
17秒前
不配.应助科研通管家采纳,获得20
17秒前
烟花应助科研通管家采纳,获得10
17秒前
17秒前
Smy完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
高lucky完成签到,获得积分20
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244