已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system

脑-机接口 计算机科学 运动表象 学习迁移 欧几里德距离 人工智能 分类器(UML) 模式识别(心理学) 频域 试验数据 算法 脑电图 计算机视觉 心理学 精神科 程序设计语言
作者
Minmin Zheng,Banghua Yang,Shouwei Gao,Xia Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102702-102702 被引量:6
标识
DOI:10.1016/j.bspc.2021.102702
摘要

Motor imagery-based brain-computer interface (MI-BCI) is widely considered as the most promising BCI. Non-stationary of EEG data and long BCIs' calibration time are main problems that affect the practicability of MI-BCI. In this paper, we propose a new algorithm, i.e. spatio-time-frequency joint sparse optimization algorithm with transfer learning (STFSTL) to achieve satisfactory classification accuracy with small training set. By introducing artificial bee colony (ABC) algorithm and least absolute shrinkage and selection operator (LASSO), the algorithm optimized parameters in spatial domain, time domain and frequency domain simultaneously. The similarity between data was measured by Euclidean distance. Through instanced-based transfer learning, the source data which was most similar to the target data was selected as the auxiliary data to train the target classifier. We evaluated the performance of the proposed algorithm on three data sets, including a private data set and two public data sets. The classification accuracy of the proposed algorithm with one fifth of the training data was higher than that of five other algorithms. Paired t-test analysis revealed that the accuracy of STFSTL and that of five other algorithms were significantly different. The experimental results suggested that the proposed algorithm with less target data can effectively achieve higher classification accuracy than traditional algorithms. It's likely to have a broad application prospect in MI-BCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱糖豆完成签到 ,获得积分10
1秒前
windyhill完成签到,获得积分10
1秒前
jying完成签到,获得积分10
2秒前
3秒前
天天快乐应助白斯特采纳,获得10
4秒前
5秒前
蒲冰红完成签到,获得积分10
5秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
rayx3x应助科研通管家采纳,获得10
6秒前
思源应助冷艳的匪采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
ho应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
police完成签到 ,获得积分10
9秒前
Ava应助研友_Z729Mn采纳,获得10
9秒前
JIERAN发布了新的文献求助10
10秒前
mo发布了新的文献求助10
11秒前
贪玩的书包完成签到,获得积分10
12秒前
科研通AI6应助徐向成采纳,获得10
12秒前
15秒前
15秒前
ho应助ghjkl采纳,获得10
16秒前
NN完成签到,获得积分10
20秒前
开心的吗喽完成签到 ,获得积分10
20秒前
21秒前
王誉霖发布了新的文献求助20
21秒前
21秒前
22秒前
24秒前
tdtk完成签到,获得积分10
24秒前
fancy完成签到,获得积分20
25秒前
1234hai完成签到 ,获得积分10
26秒前
27秒前
蒋俊杰完成签到,获得积分10
27秒前
归尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418087
求助须知:如何正确求助?哪些是违规求助? 4533775
关于积分的说明 14142248
捐赠科研通 4450059
什么是DOI,文献DOI怎么找? 2441069
邀请新用户注册赠送积分活动 1432830
关于科研通互助平台的介绍 1410030