已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system

脑-机接口 计算机科学 运动表象 学习迁移 欧几里德距离 人工智能 分类器(UML) 模式识别(心理学) 频域 试验数据 算法 脑电图 计算机视觉 心理学 精神科 程序设计语言
作者
Minmin Zheng,Banghua Yang,Shouwei Gao,Xia Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102702-102702 被引量:6
标识
DOI:10.1016/j.bspc.2021.102702
摘要

Motor imagery-based brain-computer interface (MI-BCI) is widely considered as the most promising BCI. Non-stationary of EEG data and long BCIs' calibration time are main problems that affect the practicability of MI-BCI. In this paper, we propose a new algorithm, i.e. spatio-time-frequency joint sparse optimization algorithm with transfer learning (STFSTL) to achieve satisfactory classification accuracy with small training set. By introducing artificial bee colony (ABC) algorithm and least absolute shrinkage and selection operator (LASSO), the algorithm optimized parameters in spatial domain, time domain and frequency domain simultaneously. The similarity between data was measured by Euclidean distance. Through instanced-based transfer learning, the source data which was most similar to the target data was selected as the auxiliary data to train the target classifier. We evaluated the performance of the proposed algorithm on three data sets, including a private data set and two public data sets. The classification accuracy of the proposed algorithm with one fifth of the training data was higher than that of five other algorithms. Paired t-test analysis revealed that the accuracy of STFSTL and that of five other algorithms were significantly different. The experimental results suggested that the proposed algorithm with less target data can effectively achieve higher classification accuracy than traditional algorithms. It's likely to have a broad application prospect in MI-BCI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shy关闭了shy文献求助
1秒前
ylh发布了新的文献求助10
1秒前
传统的戎完成签到,获得积分10
2秒前
阿卡波糖完成签到,获得积分10
3秒前
Owen应助exbkb采纳,获得10
6秒前
8秒前
陈小子完成签到 ,获得积分10
10秒前
九bai完成签到 ,获得积分10
10秒前
李健应助优雅的绿蓉采纳,获得10
12秒前
shy发布了新的文献求助10
13秒前
shennie发布了新的文献求助10
15秒前
16秒前
18秒前
嘿嘿应助wdzgx采纳,获得10
20秒前
exbkb发布了新的文献求助10
21秒前
hawz发布了新的文献求助10
23秒前
LALA发布了新的文献求助10
23秒前
24秒前
虚幻初之完成签到,获得积分10
24秒前
24秒前
exbkb完成签到,获得积分20
26秒前
所所应助鸣蜩十三采纳,获得10
28秒前
29秒前
29秒前
jimey完成签到,获得积分10
29秒前
英俊的铭应助hawz采纳,获得10
29秒前
31秒前
31秒前
31秒前
31秒前
YVONNE发布了新的文献求助10
34秒前
LALA发布了新的文献求助10
35秒前
35秒前
优美紫槐发布了新的文献求助10
36秒前
共享精神应助XudongHou采纳,获得10
37秒前
hawz完成签到,获得积分10
38秒前
38秒前
呆萌念真完成签到,获得积分10
43秒前
荔枝发布了新的文献求助10
45秒前
阿泽完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595590
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817799
捐赠科研通 4650797
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469726