MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study

人工智能 医学 支持向量机 前列腺癌 前列腺切除术 一致相关系数 计算机科学 神经组阅片室 概化理论 交叉验证 特征(语言学) 放射科 模式识别(心理学) 机器学习 统计 数学 癌症 内科学 语言学 哲学 神经学 精神科
作者
Renato Cuocolo,Arnaldo Stanzione,Riccardo Faletti,Marco Gatti,Giorgio Calleris,Alberto Fornari,Francesco Gentile,Aurelio Motta,Serena Dell’Aversana,Massimiliano Creta,Nicola Longo,Paolo Gontero,Stefano Cirillo,Paolo Fonio,Massimo Imbriaco
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (10): 7575-7583 被引量:58
标识
DOI:10.1007/s00330-021-07856-3
摘要

Abstract Objectives To build a machine learning (ML) model to detect extraprostatic extension (EPE) of prostate cancer (PCa), based on radiomics features extracted from prostate MRI index lesions. Methods Consecutive MRI exams of patients undergoing radical prostatectomy for PCa were retrospectively collected from three institutions. Axial T2-weighted and apparent diffusion coefficient map images were annotated to obtain index lesion volumes of interest for radiomics feature extraction. Data from one institution was used for training, feature selection (using reproducibility, variance and pairwise correlation analyses, and a correlation-based subset evaluator), and tuning of a support vector machine (SVM) algorithm, with stratified 10-fold cross-validation. The model was tested on the two remaining institutions’ data and compared with a baseline reference and expert radiologist assessment of EPE. Results In total, 193 patients were included. From an initial dataset of 2436 features, 2287 were excluded due to either poor stability, low variance, or high collinearity. Among the remaining, 14 features were used to train the ML model, which reached an overall accuracy of 83% in the training set. In the two external test sets, the SVM achieved an accuracy of 79% and 74% respectively, not statistically different from that of the radiologist (81–83%, p = 0.39–1) and outperforming the baseline reference ( p = 0.001–0.02). Conclusions A ML model solely based on radiomics features demonstrated high accuracy for EPE detection and good generalizability in a multicenter setting. Paired to qualitative EPE assessment, this approach could aid radiologists in this challenging task. Key Points • Predicting the presence of EPE in prostate cancer patients is a challenging task for radiologists. • A support vector machine algorithm achieved high diagnostic accuracy for EPE detection, with good generalizability when tested on multiple external datasets. • The performance of the algorithm was not significantly different from that of an experienced radiologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rey发布了新的文献求助10
1秒前
Orange应助帅气的皮卡采纳,获得10
1秒前
orixero应助优雅翎采纳,获得10
1秒前
1秒前
慕青应助DRHSK采纳,获得10
1秒前
2秒前
shasha发布了新的文献求助10
2秒前
sheep发布了新的文献求助10
2秒前
Linw发布了新的文献求助10
3秒前
3秒前
科目三应助清秀的断天采纳,获得10
3秒前
七月发布了新的文献求助10
3秒前
Ava应助袁气小笼包采纳,获得10
3秒前
iNk应助lh大号采纳,获得20
4秒前
XY发布了新的文献求助10
4秒前
4秒前
FAIRY完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
科研通AI6应助xiu采纳,获得30
5秒前
科研通AI2S应助mono采纳,获得10
5秒前
神勇的荟完成签到 ,获得积分10
5秒前
微风418完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助开心市民采纳,获得30
7秒前
blink完成签到,获得积分10
7秒前
jjn应助yx采纳,获得10
8秒前
钟D摆发布了新的文献求助10
9秒前
黄钦清发布了新的文献求助10
9秒前
董董发布了新的文献求助10
9秒前
科研通AI6应助小耀采纳,获得10
9秒前
9秒前
10秒前
可爱的函函应助维时采纳,获得10
10秒前
Jinting关注了科研通微信公众号
10秒前
10秒前
11秒前
12秒前
是她推了熹娘娘完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577