亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study

人工智能 医学 支持向量机 前列腺癌 前列腺切除术 一致相关系数 计算机科学 神经组阅片室 概化理论 交叉验证 特征(语言学) 放射科 模式识别(心理学) 机器学习 统计 数学 癌症 内科学 哲学 精神科 语言学 神经学
作者
Renato Cuocolo,Arnaldo Stanzione,Riccardo Faletti,Marco Gatti,Giorgio Calleris,Alberto Fornari,Francesco Gentile,Aurelio Motta,Serena Dell’Aversana,Massimiliano Creta,Nicola Longo,Paolo Gontero,Stefano Cirillo,Paolo Fonio,Massimo Imbriaco
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (10): 7575-7583 被引量:48
标识
DOI:10.1007/s00330-021-07856-3
摘要

Abstract Objectives To build a machine learning (ML) model to detect extraprostatic extension (EPE) of prostate cancer (PCa), based on radiomics features extracted from prostate MRI index lesions. Methods Consecutive MRI exams of patients undergoing radical prostatectomy for PCa were retrospectively collected from three institutions. Axial T2-weighted and apparent diffusion coefficient map images were annotated to obtain index lesion volumes of interest for radiomics feature extraction. Data from one institution was used for training, feature selection (using reproducibility, variance and pairwise correlation analyses, and a correlation-based subset evaluator), and tuning of a support vector machine (SVM) algorithm, with stratified 10-fold cross-validation. The model was tested on the two remaining institutions’ data and compared with a baseline reference and expert radiologist assessment of EPE. Results In total, 193 patients were included. From an initial dataset of 2436 features, 2287 were excluded due to either poor stability, low variance, or high collinearity. Among the remaining, 14 features were used to train the ML model, which reached an overall accuracy of 83% in the training set. In the two external test sets, the SVM achieved an accuracy of 79% and 74% respectively, not statistically different from that of the radiologist (81–83%, p = 0.39–1) and outperforming the baseline reference ( p = 0.001–0.02). Conclusions A ML model solely based on radiomics features demonstrated high accuracy for EPE detection and good generalizability in a multicenter setting. Paired to qualitative EPE assessment, this approach could aid radiologists in this challenging task. Key Points • Predicting the presence of EPE in prostate cancer patients is a challenging task for radiologists. • A support vector machine algorithm achieved high diagnostic accuracy for EPE detection, with good generalizability when tested on multiple external datasets. • The performance of the algorithm was not significantly different from that of an experienced radiologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的访梦完成签到,获得积分10
16秒前
23秒前
量子星尘发布了新的文献求助150
29秒前
43秒前
Demi_Ming完成签到,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
1分钟前
1分钟前
2分钟前
学不完了完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI5应助焦糖玛奇朵采纳,获得10
2分钟前
2分钟前
Ldq应助科研通管家采纳,获得10
2分钟前
3分钟前
Sandy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
焦糖玛奇朵完成签到,获得积分10
3分钟前
4分钟前
4分钟前
lvpori发布了新的文献求助30
4分钟前
伏城完成签到 ,获得积分10
4分钟前
lvpori完成签到,获得积分10
4分钟前
赘婿应助su采纳,获得10
4分钟前
小马甲应助qqqq采纳,获得10
4分钟前
4分钟前
4分钟前
qqqq发布了新的文献求助10
4分钟前
Ldq应助科研通管家采纳,获得10
4分钟前
在水一方应助qqqq采纳,获得10
4分钟前
5分钟前
CRUSADER完成签到,获得积分10
5分钟前
博ge完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
慢跑跑不动的肥仔完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064470
求助须知:如何正确求助?哪些是违规求助? 4287518
关于积分的说明 13359099
捐赠科研通 4106033
什么是DOI,文献DOI怎么找? 2248371
邀请新用户注册赠送积分活动 1253912
关于科研通互助平台的介绍 1185234