MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study

人工智能 医学 支持向量机 前列腺癌 前列腺切除术 一致相关系数 计算机科学 神经组阅片室 概化理论 交叉验证 特征(语言学) 放射科 模式识别(心理学) 机器学习 统计 数学 癌症 内科学 哲学 精神科 语言学 神经学
作者
Renato Cuocolo,Arnaldo Stanzione,Riccardo Faletti,Marco Gatti,Giorgio Calleris,Alberto Fornari,Francesco Gentile,Aurelio Motta,Serena Dell’Aversana,Massimiliano Creta,Nicola Longo,Paolo Gontero,Stefano Cirillo,Paolo Fonio,Massimo Imbriaco
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (10): 7575-7583 被引量:48
标识
DOI:10.1007/s00330-021-07856-3
摘要

Abstract Objectives To build a machine learning (ML) model to detect extraprostatic extension (EPE) of prostate cancer (PCa), based on radiomics features extracted from prostate MRI index lesions. Methods Consecutive MRI exams of patients undergoing radical prostatectomy for PCa were retrospectively collected from three institutions. Axial T2-weighted and apparent diffusion coefficient map images were annotated to obtain index lesion volumes of interest for radiomics feature extraction. Data from one institution was used for training, feature selection (using reproducibility, variance and pairwise correlation analyses, and a correlation-based subset evaluator), and tuning of a support vector machine (SVM) algorithm, with stratified 10-fold cross-validation. The model was tested on the two remaining institutions’ data and compared with a baseline reference and expert radiologist assessment of EPE. Results In total, 193 patients were included. From an initial dataset of 2436 features, 2287 were excluded due to either poor stability, low variance, or high collinearity. Among the remaining, 14 features were used to train the ML model, which reached an overall accuracy of 83% in the training set. In the two external test sets, the SVM achieved an accuracy of 79% and 74% respectively, not statistically different from that of the radiologist (81–83%, p = 0.39–1) and outperforming the baseline reference ( p = 0.001–0.02). Conclusions A ML model solely based on radiomics features demonstrated high accuracy for EPE detection and good generalizability in a multicenter setting. Paired to qualitative EPE assessment, this approach could aid radiologists in this challenging task. Key Points • Predicting the presence of EPE in prostate cancer patients is a challenging task for radiologists. • A support vector machine algorithm achieved high diagnostic accuracy for EPE detection, with good generalizability when tested on multiple external datasets. • The performance of the algorithm was not significantly different from that of an experienced radiologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助Steve采纳,获得10
1秒前
3秒前
4秒前
5秒前
6秒前
肉卷完成签到,获得积分10
6秒前
受伤的豁完成签到 ,获得积分10
8秒前
9秒前
遇见发布了新的文献求助10
10秒前
11秒前
Steve发布了新的文献求助10
12秒前
小蘑菇应助加鲁鲁采纳,获得10
14秒前
14秒前
郭义敏完成签到,获得积分0
15秒前
15秒前
17秒前
烟花应助霜降采纳,获得10
17秒前
17秒前
17秒前
SciGPT应助星辰采纳,获得10
18秒前
wangyu发布了新的文献求助10
18秒前
20秒前
20秒前
IAMXC发布了新的文献求助10
21秒前
21秒前
许诺发布了新的文献求助10
22秒前
Owen应助Cheng采纳,获得10
22秒前
kk完成签到,获得积分10
22秒前
lilili发布了新的文献求助10
23秒前
23秒前
24秒前
pphhhhaannn发布了新的文献求助10
26秒前
30秒前
HanlinLiu完成签到,获得积分10
31秒前
王九八发布了新的文献求助10
31秒前
加鲁鲁发布了新的文献求助10
31秒前
等待的冰凡完成签到 ,获得积分10
33秒前
毛豆应助IAMXC采纳,获得30
33秒前
大模型应助许诺采纳,获得10
34秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3279223
求助须知:如何正确求助?哪些是违规求助? 2917553
关于积分的说明 8386558
捐赠科研通 2588366
什么是DOI,文献DOI怎么找? 1410094
科研通“疑难数据库(出版商)”最低求助积分说明 657603
邀请新用户注册赠送积分活动 638739