MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study

人工智能 医学 支持向量机 前列腺癌 前列腺切除术 一致相关系数 计算机科学 神经组阅片室 概化理论 交叉验证 特征(语言学) 放射科 模式识别(心理学) 机器学习 统计 数学 癌症 内科学 语言学 哲学 神经学 精神科
作者
Renato Cuocolo,Arnaldo Stanzione,Riccardo Faletti,Marco Gatti,Giorgio Calleris,Alberto Fornari,Francesco Gentile,Aurelio Motta,Serena Dell’Aversana,Massimiliano Creta,Nicola Longo,Paolo Gontero,Stefano Cirillo,Paolo Fonio,Massimo Imbriaco
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (10): 7575-7583 被引量:48
标识
DOI:10.1007/s00330-021-07856-3
摘要

Abstract Objectives To build a machine learning (ML) model to detect extraprostatic extension (EPE) of prostate cancer (PCa), based on radiomics features extracted from prostate MRI index lesions. Methods Consecutive MRI exams of patients undergoing radical prostatectomy for PCa were retrospectively collected from three institutions. Axial T2-weighted and apparent diffusion coefficient map images were annotated to obtain index lesion volumes of interest for radiomics feature extraction. Data from one institution was used for training, feature selection (using reproducibility, variance and pairwise correlation analyses, and a correlation-based subset evaluator), and tuning of a support vector machine (SVM) algorithm, with stratified 10-fold cross-validation. The model was tested on the two remaining institutions’ data and compared with a baseline reference and expert radiologist assessment of EPE. Results In total, 193 patients were included. From an initial dataset of 2436 features, 2287 were excluded due to either poor stability, low variance, or high collinearity. Among the remaining, 14 features were used to train the ML model, which reached an overall accuracy of 83% in the training set. In the two external test sets, the SVM achieved an accuracy of 79% and 74% respectively, not statistically different from that of the radiologist (81–83%, p = 0.39–1) and outperforming the baseline reference ( p = 0.001–0.02). Conclusions A ML model solely based on radiomics features demonstrated high accuracy for EPE detection and good generalizability in a multicenter setting. Paired to qualitative EPE assessment, this approach could aid radiologists in this challenging task. Key Points • Predicting the presence of EPE in prostate cancer patients is a challenging task for radiologists. • A support vector machine algorithm achieved high diagnostic accuracy for EPE detection, with good generalizability when tested on multiple external datasets. • The performance of the algorithm was not significantly different from that of an experienced radiologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易安发布了新的文献求助10
1秒前
2秒前
苍蓝寸心发布了新的文献求助10
4秒前
汉堡包应助秦路采纳,获得10
6秒前
善学以致用应助0015采纳,获得10
6秒前
7秒前
悦耳的谷芹完成签到,获得积分10
9秒前
9秒前
carryxu完成签到,获得积分10
10秒前
伶俐百川完成签到,获得积分10
11秒前
11秒前
脑洞疼应助liuzengzhang666采纳,获得10
12秒前
小宋发布了新的文献求助10
13秒前
13秒前
13秒前
Chaos发布了新的文献求助10
14秒前
16秒前
17秒前
MediocreC发布了新的文献求助10
18秒前
英姑应助栗子栗栗子采纳,获得10
18秒前
20秒前
哪吒发布了新的文献求助60
22秒前
秦路发布了新的文献求助10
22秒前
zhai发布了新的文献求助10
22秒前
hhh完成签到,获得积分10
23秒前
孤独君浩完成签到 ,获得积分10
24秒前
无花果应助小胡采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
ZCT关闭了ZCT文献求助
26秒前
26秒前
科研通AI2S应助张 大头采纳,获得10
27秒前
29秒前
29秒前
栗子栗栗子完成签到,获得积分10
29秒前
魔芋发布了新的文献求助10
31秒前
小雪发布了新的文献求助10
31秒前
背后大白完成签到,获得积分10
32秒前
wssamuel完成签到 ,获得积分10
32秒前
0015发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019