Seed the Views: Hierarchical Semantic Alignment for Contrastive Representation Learning

计算机科学 人工智能 模式识别(心理学) 关系(数据库) 相似性(几何) 代表(政治) 图像(数学) 自然语言处理 假阳性悖论 机器学习
作者
Haohang Xu,Xiaopeng Zhang,Hao Li,Lingxi Xie,Hongkai Xiong,Qi Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tpami.2022.3176690
摘要

Self-supervised learning based on instance discrimination has shown remarkable progress. In particular, contrastive learning,which regards each image as well as its augmentations as an individual class and tries to distinguish them from all other images, has been verified effective for representation learning. However, conventional contrastive learning does not model the relation between semantically similar samples explicitly. In this paper, we propose a general module that considers the semantic similarity among images. This is achieved by expanding the views generated by a single image to Cross-Samples and Multi-Levels, and modeling the invariance to semantically similar images in a hierarchical way. Specifically, the cross-samples are generated by a data mixing operation, which is constrained within samples that are semantically similar, while the multi-level samples are expanded at the intermediate layers of a network. In this way, the contrastive loss is extended to allow for multiple positives per anchor, and explicitly pulling semantically similar images together at different layers of the network. Our method, termed as CSML, has the ability to integrate multi-level representations across samples in a robust way. CSML is applicable to current contrastive based methods and consistently improves the performance. Notably, using MoCo v2 as an instantiation, CSML achieves 76.6% top-1 accuracy with linear evaluation using ResNet-50 as backbone, 66.7% and 75.1% top-1 accuracy with only 1% and 10% labels, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
drx66完成签到,获得积分10
3秒前
3秒前
取法乎上完成签到 ,获得积分10
3秒前
5秒前
PATer发布了新的文献求助10
7秒前
舒适的梦玉完成签到,获得积分10
8秒前
奥丁蒂法完成签到,获得积分10
9秒前
知否完成签到 ,获得积分0
9秒前
9秒前
tulips完成签到 ,获得积分10
10秒前
白筠233发布了新的文献求助30
14秒前
benj完成签到,获得积分10
14秒前
七七爱学习完成签到,获得积分10
15秒前
鲁班七号发布了新的文献求助10
15秒前
YuuuY完成签到 ,获得积分10
18秒前
19秒前
19秒前
22秒前
Ben发布了新的文献求助10
23秒前
qqqqqqqqqqqq发布了新的文献求助10
25秒前
小学生熊大完成签到,获得积分10
26秒前
ZY完成签到,获得积分10
27秒前
koral完成签到,获得积分10
28秒前
我是老大应助陈医生采纳,获得10
28秒前
鲁班七号完成签到,获得积分10
29秒前
ag完成签到,获得积分10
31秒前
白筠233完成签到,获得积分10
32秒前
35秒前
35秒前
qqqqqqqqqqqq完成签到,获得积分10
37秒前
明理的踏歌完成签到,获得积分10
38秒前
39秒前
39秒前
因生如沫完成签到,获得积分10
40秒前
夏xia完成签到 ,获得积分10
42秒前
陈医生发布了新的文献求助10
43秒前
淘淘完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856740
求助须知:如何正确求助?哪些是违规求助? 6323898
关于积分的说明 15635149
捐赠科研通 4971208
什么是DOI,文献DOI怎么找? 2681237
邀请新用户注册赠送积分活动 1625183
关于科研通互助平台的介绍 1582215