Optimization of tuned mass damper for seismic control of submerged floating tunnel

粒子群优化 系泊 阻尼器 调谐质量阻尼器 和声搜索 结构工程 时域 固有频率 工程类 遗传算法 频域 控制理论(社会学) 计算机科学 振动 海洋工程 数学 物理 数学优化 声学 算法 数学分析 计算机视觉 人工智能 控制(管理)
作者
Chungkuk Jin,Woo Chul Chung,Do-Soo Kwon,Moo‐Hyun Kim
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:241: 112460-112460 被引量:25
标识
DOI:10.1016/j.engstruct.2021.112460
摘要

• A time-domain hydro-elastic-simulation model is established for a submerged floating tunnel with a tuned mass damper. • Metaheuristic optimization algorithms show a good optimization performance for parameters of the tuned mass damper. • Tuned mass damper plays an important role in reducing resonant motions and mooring tension for submerged floating tunnel. This study presents the optimization process of a tuned mass damper (TMD) to mitigate the lateral motions and mooring tensions of a submerged floating tunnel (SFT) under seismic excitations. A time-domain hydro-elastic-simulation model is established to solve the coupled dynamics among the tunnel, TMD, and mooring lines. The wet hydro-elastic natural frequencies of the SFT with mooring are estimated. The spring and damping coefficients of TMD are optimized by using metaheuristic optimization algorithms, i.e., harmony search (HS), genetic algorithm (GA), and particle swarm optimization (PSO). HS is coupled with the time-domain dynamic-simulation model to perform the iterative process of updating the coefficients by HS, running the simulation with updated coefficients, returning the results back to HS. The optimized coefficients obtained by HS are also cross-checked by using GA and PSO with the pre-established objective function, which shows consistent results. Subsequently, the effectiveness of TMD with the optimized parameters is tested for a variety of seismic conditions that can cover the most seismic magnitudes. The time histories, spectra, and statistics of SFT dynamic responses and mooring tensions are systematically analyzed and discussed. As intended, the optimized TMD effectively attenuates the resonant hydro-elastic transient motions of the SFT at its lowest lateral natural frequency. The mooring tensions are also significantly reduced by adopting the optimized TMD, especially in large earthquakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzc完成签到,获得积分20
刚刚
1秒前
mouxq发布了新的文献求助10
1秒前
龙之剑香应助感动清炎采纳,获得10
2秒前
cdercder应助zhzike采纳,获得20
4秒前
6秒前
虚幻火龙果完成签到,获得积分10
7秒前
echo完成签到,获得积分20
9秒前
9秒前
有信心完成签到 ,获得积分10
10秒前
刘叶发布了新的文献求助10
12秒前
anan完成签到,获得积分10
13秒前
冉冉完成签到 ,获得积分0
13秒前
斯寜应助淡淡的小蜜蜂采纳,获得10
15秒前
ziying126发布了新的文献求助10
16秒前
上官若男应助xiajj采纳,获得10
17秒前
OPV-Small-cui发布了新的文献求助10
18秒前
澜生完成签到,获得积分10
18秒前
22秒前
24秒前
25秒前
29秒前
李健的小迷弟应助嘎嘎采纳,获得10
30秒前
曾经幻柏发布了新的文献求助10
30秒前
TANGTANG发布了新的文献求助10
32秒前
碧蓝一兰发布了新的文献求助10
32秒前
一一完成签到 ,获得积分10
32秒前
32秒前
读书的女人最美丽完成签到,获得积分10
36秒前
牛黄完成签到 ,获得积分10
36秒前
安容天完成签到,获得积分10
36秒前
科研通AI5应助adfadf采纳,获得10
38秒前
马户的崛起完成签到,获得积分10
38秒前
39秒前
Bismarck发布了新的文献求助10
39秒前
闪电大卫发布了新的文献求助30
40秒前
i7完成签到,获得积分10
40秒前
Eason完成签到,获得积分10
40秒前
曾经幻柏完成签到,获得积分10
41秒前
领导范儿应助碧蓝一兰采纳,获得30
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740384
求助须知:如何正确求助?哪些是违规求助? 3283238
关于积分的说明 10034517
捐赠科研通 3000118
什么是DOI,文献DOI怎么找? 1646328
邀请新用户注册赠送积分活动 783510
科研通“疑难数据库(出版商)”最低求助积分说明 750394