过滤(数学)
纳米复合材料
人体净化
化学工程
吸附
饮用水净化
材料科学
水处理
碳纤维
膜
化学
纳米技术
废物管理
复合材料
环境工程
有机化学
环境科学
复合数
工程类
统计
生物化学
数学
作者
Michał Jakubczak,Ewa Karwowska,Alicja Fiedorczuk,Agnieszka Jastrzębska
出处
期刊:RSC Advances
[The Royal Society of Chemistry]
日期:2021-01-01
卷期号:11 (30): 18509-18518
被引量:6
摘要
Achieving both effective and sustainable water decontamination technology requires development of a universal filtration solution. However, effective removal of natural waterborne microorganisms still remains a challenge. The use of nanoparticles in water filters is promising but also leads to problems with their efficiency and safety. To cross these bottlenecks, we have designed a novel multifunctional carbon-supported bioactive hybrid nanocomposite filtration bed. For this purpose, we took advantage of granular activated carbon (C), graphene oxide (GO) and bioactive Al2O3/Ag nanocomposite particles (NCP). These components were assembled into a hybrid nanocomposite structure using facile in situ surface decoration via a sol-gel approach. This obtained C/GO/NCP filtration bed was thoroughly characterized in terms of morphology, structure and surface properties as well as further evaluated for tap water filtration efficiency. Analysis of the preferential sites for bacteria adsorption and biological tests under close-to-real static and dynamic filtration conditions has proved C/GO/NCP's efficiency in eliminating model and natural strains of waterborne microorganisms. At the same time, nanoparticles were not released into the filtrate, which confirmed material stability and safety. We have also revealed that C/GO/NCP nanofiltration bed was self-sterilizing which means that it entirely eliminated up to 100% of the filtered bacteria cells within short periods of contact time. What is more, the low-temperature thermal regeneration allowed recovering the assumed properties. In general, the obtained results indicate a breakthrough in designing hybrid-structured filtration beds that can be easily synthesized and safely used for drinking water decontamination.
科研通智能强力驱动
Strongly Powered by AbleSci AI