Scalable Wood Hydrogel Membrane with Nanoscale Channels

材料科学 纳米技术 纳米尺度 可扩展性 自愈水凝胶 计算机科学 化学 高分子化学 生物化学 数据库
作者
Gegu Chen,Li Tian,Chaoji Chen,Weiqing Kong,Miaolun Jiao,Bo Jiang,Qinqin Xia,Zhiqiang Liang,Yang Liu,Shuaiming He,Liangbing Hu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (7): 11244-11252 被引量:86
标识
DOI:10.1021/acsnano.0c10117
摘要

Many efforts have been dedicated to exploring nanofluidic systems for various applications including water purification and energy generation. However, creating robust nanofluidic materials with tunable channel orientations and numerous nanochannels or nanopores on a large scale remains challenging. Here, we demonstrate a scalable and cost-effective method to fabricate a robust and highly conductive nanofluidic wood hydrogel membrane in which ions can transport across the membrane. The ionically conductive balsa wood hydrogel membrane is fabricated by infiltrating poly(vinyl alcohol) (PVA)/acrylic acid (AA) hydrogel into the inherent bimodal porous wood structure. The balsa wood hydrogel membrane demonstrates a 3 times higher strength (52.7 MPa) and 2 orders of magnitude higher ionic conductivity compared to those of natural balsa both in the radial direction (coded as R direction) and along the longitudinal direction (coded as L direction). The ionic conductivity of the balsa wood hydrogel membrane is 1.29 mS cm-1 along the L direction and nearly 1 mS cm-1 along the R direction at low salt concentrations (up to 10 mM). In addition, the surface-charge-governed ion transport also renders the balsa wood hydrogel membrane able to harvest electrical energy from salinity gradients. A current density of up to 17.65 μA m-2 and an output power density of 0.56 mW m-2 are obtained under a 1000-fold salt concentration gradient, which can be further improved to 2.7 mW m-2 by increasing the AA content from 25 wt % to 50 wt %. These findings make contributions to develop energy-harvesting systems and other nanofluidic devices from sustainable wood materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666发布了新的文献求助10
1秒前
科研通AI2S应助乐观芹采纳,获得10
1秒前
1秒前
ddak发布了新的文献求助20
1秒前
2秒前
miao完成签到,获得积分10
2秒前
善学以致用应助biabo采纳,获得10
3秒前
杳鸢应助凶狠的盼柳采纳,获得10
4秒前
MU发布了新的文献求助10
4秒前
4秒前
5秒前
菠萝蜜发布了新的文献求助10
5秒前
maox1aoxin应助DZQ采纳,获得30
8秒前
一一发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
清脆的以松关注了科研通微信公众号
10秒前
浅禾檬应助科研通管家采纳,获得20
11秒前
852应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助如意2023采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
hucchongzi应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得30
11秒前
hucchongzi应助科研通管家采纳,获得30
11秒前
jevon应助科研通管家采纳,获得10
12秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
小西米完成签到 ,获得积分10
12秒前
pluto应助wangxuhui1978采纳,获得10
13秒前
13秒前
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248