已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Forecasting the importance of product attributes using online customer reviews and Google Trends

计算机科学 产品(数学) 新产品开发 产品设计 过程(计算) 模糊逻辑 数据挖掘 集合(抽象数据类型) 运筹学 数据科学 工业工程 营销 业务 人工智能 工程类 数学 操作系统 程序设计语言 几何学
作者
Hanan Yakubu,C. K. Kwong
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:171: 120983-120983 被引量:38
标识
DOI:10.1016/j.techfore.2021.120983
摘要

During the early stage of product design, product manufacturers seek to identify the most relevant product features that will meet the demands and needs of consumers. Conventionally, several surveys have to be undertaken during the time interval between product design and the launch of anew product, to understand any changes on the importance of the product attributes. However, the process is time-consuming and costly. Recently, online customer reviews have been generated on many websites and can be used to analyse the change of the importance of the product attributes. Also, Google Trends has been adopted in previous studies to understand consumers interests in certain products over a period of time and can be considered in analysing the change in product attributes importance. However, no such kinds of studies have been reported. This study aims to present an empirical approach that uses online big data, to identify and predict product design attributes of products that will be relevant to consumers in the future. To achieve this aim, we propose a methodology for forecasting the future importance of product attributes based on online customer reviews and Google Trends. A case study on an electric hairdryer is presented to illustrate the proposed methodology. Validation tests on the proposed fuzzy rough set time series method were conducted. The test results indicate that the proposed method outperforms the fuzzy time series, the fuzzy k medioid clustering time series and the ANFIS method in terms of forecasting accuracy. Our results contribute to the processes of new product development and can potentially assist R&D managers to establish methodologies and processes for product designs capable of generating higher returns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Carolchen发布了新的文献求助10
2秒前
爱吃橙子完成签到 ,获得积分10
2秒前
辣椒发布了新的文献求助10
4秒前
4秒前
脑洞疼应助认真柜子采纳,获得10
10秒前
ET完成签到,获得积分10
10秒前
12秒前
Jasper应助阿鸢采纳,获得10
12秒前
小m完成签到 ,获得积分10
13秒前
紧张的似狮完成签到 ,获得积分10
14秒前
15秒前
木子木完成签到,获得积分10
17秒前
kdjm688完成签到 ,获得积分10
18秒前
guozizi完成签到,获得积分10
19秒前
新的旅程发布了新的文献求助30
19秒前
Marcus完成签到,获得积分10
20秒前
shuofeng完成签到 ,获得积分10
23秒前
Akim应助典雅的诗兰采纳,获得20
25秒前
新的旅程完成签到,获得积分10
26秒前
gtgyh完成签到 ,获得积分10
26秒前
Mathletics完成签到 ,获得积分10
27秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
30秒前
田様应助luwenxuan采纳,获得10
34秒前
哈哈哈完成签到 ,获得积分10
34秒前
38秒前
无花果应助依惜采纳,获得10
39秒前
无辜的夏兰完成签到,获得积分10
39秒前
39秒前
顺利白柏完成签到 ,获得积分10
40秒前
seven完成签到,获得积分10
41秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
42秒前
阿鸢发布了新的文献求助10
43秒前
抠鼻公主完成签到 ,获得积分10
44秒前
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749