Forecasting the importance of product attributes using online customer reviews and Google Trends

计算机科学 产品(数学) 新产品开发 产品设计 过程(计算) 模糊逻辑 数据挖掘 集合(抽象数据类型) 运筹学 数据科学 工业工程 营销 业务 人工智能 工程类 数学 操作系统 程序设计语言 几何学
作者
Hanan Yakubu,C. K. Kwong
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:171: 120983-120983 被引量:38
标识
DOI:10.1016/j.techfore.2021.120983
摘要

During the early stage of product design, product manufacturers seek to identify the most relevant product features that will meet the demands and needs of consumers. Conventionally, several surveys have to be undertaken during the time interval between product design and the launch of anew product, to understand any changes on the importance of the product attributes. However, the process is time-consuming and costly. Recently, online customer reviews have been generated on many websites and can be used to analyse the change of the importance of the product attributes. Also, Google Trends has been adopted in previous studies to understand consumers interests in certain products over a period of time and can be considered in analysing the change in product attributes importance. However, no such kinds of studies have been reported. This study aims to present an empirical approach that uses online big data, to identify and predict product design attributes of products that will be relevant to consumers in the future. To achieve this aim, we propose a methodology for forecasting the future importance of product attributes based on online customer reviews and Google Trends. A case study on an electric hairdryer is presented to illustrate the proposed methodology. Validation tests on the proposed fuzzy rough set time series method were conducted. The test results indicate that the proposed method outperforms the fuzzy time series, the fuzzy k medioid clustering time series and the ANFIS method in terms of forecasting accuracy. Our results contribute to the processes of new product development and can potentially assist R&D managers to establish methodologies and processes for product designs capable of generating higher returns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘雨森完成签到 ,获得积分10
1秒前
Abdurrahman完成签到,获得积分10
3秒前
yhy完成签到 ,获得积分10
4秒前
4秒前
mads完成签到 ,获得积分10
4秒前
9秒前
支半雪发布了新的文献求助30
10秒前
龙飞凤舞完成签到,获得积分10
11秒前
zz完成签到,获得积分10
11秒前
梦启完成签到,获得积分10
12秒前
务实的焦完成签到 ,获得积分10
13秒前
muttcy完成签到,获得积分10
14秒前
wen_dai完成签到,获得积分10
14秒前
阿琦完成签到 ,获得积分10
15秒前
轩辕书白发布了新的文献求助10
16秒前
时尚语梦完成签到 ,获得积分10
17秒前
认真初之完成签到,获得积分10
18秒前
支半雪完成签到,获得积分10
21秒前
弧光完成签到 ,获得积分10
22秒前
_Kachun完成签到,获得积分10
24秒前
左丘不评完成签到 ,获得积分0
24秒前
牛头人完成签到,获得积分10
24秒前
东asdfghjkl发布了新的文献求助30
26秒前
26秒前
随心完成签到 ,获得积分10
30秒前
余淮完成签到,获得积分10
31秒前
zyfqpc完成签到,获得积分10
34秒前
东方越彬发布了新的文献求助10
36秒前
rookie完成签到,获得积分10
39秒前
结实的德地完成签到,获得积分10
40秒前
大模型应助CY采纳,获得10
41秒前
yww完成签到,获得积分10
42秒前
LVVVB完成签到,获得积分10
44秒前
fuguier发布了新的文献求助10
44秒前
47秒前
大方博涛完成签到,获得积分10
49秒前
khurram完成签到,获得积分10
49秒前
50秒前
eyu完成签到,获得积分10
50秒前
小木子发布了新的文献求助10
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137101
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784523
捐赠科研通 2444109
什么是DOI,文献DOI怎么找? 1299758
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011