MetaHTR: Towards Writer-Adaptive Handwritten Text Recognition

计算机科学 杠杆(统计) 人工智能 集合(抽象数据类型) 利用 推论 写作风格 自然语言处理 机器学习 语言学 计算机安全 哲学 程序设计语言
作者
Ayan Kumar Bhunia,Shuvozit Ghose,Amandeep Kumar,Pinaki Nath Chowdhury,Aneeshan Sain,Yi-Zhe Song
标识
DOI:10.1109/cvpr46437.2021.01557
摘要

Handwritten Text Recognition (HTR) remains a challenging problem to date, largely due to the varying writing styles that exist amongst us. Prior works however generally operate with the assumption that there is a limited number of styles, most of which have already been captured by existing datasets. In this paper, we take a completely different perspective – we work on the assumption that there is always a new style that is drastically different, and that we will only have very limited data during testing to perform adaptation. This creates a commercially viable solution – being exposed to the new style, the model has the best shot at adaptation, and the few-sample nature makes it practical to implement. We achieve this via a novel meta-learning framework which exploits additional new-writer data via a support set, and outputs a writer-adapted model via single gradient step update, all during inference (see Figure 1). We discover and leverage on the important insight that there exists few key characters per writer that exhibit relatively larger style discrepancies. For that, we additionally propose to meta-learn instance specific weights for a character-wise cross-entropy loss, which is specifically designed to work with the sequential nature of text data. Our writer-adaptive MetaHTR framework can be easily implemented on the top of most state-of-the-art HTR models. Experiments show an average performance gain of 5-7% can be obtained by observing very few new style data (≤ 16).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DYY完成签到,获得积分20
刚刚
langwang完成签到,获得积分10
2秒前
2秒前
3秒前
大马猴完成签到,获得积分10
3秒前
xudonghui发布了新的文献求助10
6秒前
哆啦给哆啦的求助进行了留言
8秒前
wyfre发布了新的文献求助10
9秒前
Deerlu完成签到,获得积分10
9秒前
星辰大海应助Lll采纳,获得10
10秒前
背后的书文完成签到,获得积分10
10秒前
11秒前
彭于晏应助边港洋采纳,获得10
14秒前
星下梧桐完成签到,获得积分10
15秒前
15秒前
ABEDO完成签到 ,获得积分10
16秒前
ywzwszl完成签到,获得积分10
18秒前
张子捷应助傻傻的孤云采纳,获得10
19秒前
橘子发布了新的文献求助10
22秒前
王孟凡完成签到,获得积分10
23秒前
23秒前
99668完成签到,获得积分10
23秒前
爱静静应助星下梧桐采纳,获得10
24秒前
Lll完成签到,获得积分10
24秒前
oceanao应助开朗的保温杯采纳,获得10
25秒前
min完成签到 ,获得积分10
27秒前
边港洋发布了新的文献求助10
27秒前
35秒前
避橙完成签到,获得积分10
36秒前
37秒前
oceanao应助cong采纳,获得10
40秒前
避橙发布了新的文献求助10
40秒前
忐忑的冰淇淋完成签到,获得积分10
41秒前
浩二完成签到,获得积分10
41秒前
42秒前
苗条的一一完成签到,获得积分10
42秒前
缥缈盼旋完成签到 ,获得积分10
43秒前
浩二发布了新的文献求助10
44秒前
wyfre完成签到,获得积分20
45秒前
微笑诗蕊发布了新的文献求助20
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162987
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902734
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187