MetaHTR: Towards Writer-Adaptive Handwritten Text Recognition

计算机科学 杠杆(统计) 人工智能 集合(抽象数据类型) 利用 推论 写作风格 自然语言处理 机器学习 语言学 计算机安全 哲学 程序设计语言
作者
Ayan Kumar Bhunia,Shuvozit Ghose,Amandeep Kumar,Pinaki Nath Chowdhury,Aneeshan Sain,Yi-Zhe Song
标识
DOI:10.1109/cvpr46437.2021.01557
摘要

Handwritten Text Recognition (HTR) remains a challenging problem to date, largely due to the varying writing styles that exist amongst us. Prior works however generally operate with the assumption that there is a limited number of styles, most of which have already been captured by existing datasets. In this paper, we take a completely different perspective – we work on the assumption that there is always a new style that is drastically different, and that we will only have very limited data during testing to perform adaptation. This creates a commercially viable solution – being exposed to the new style, the model has the best shot at adaptation, and the few-sample nature makes it practical to implement. We achieve this via a novel meta-learning framework which exploits additional new-writer data via a support set, and outputs a writer-adapted model via single gradient step update, all during inference (see Figure 1). We discover and leverage on the important insight that there exists few key characters per writer that exhibit relatively larger style discrepancies. For that, we additionally propose to meta-learn instance specific weights for a character-wise cross-entropy loss, which is specifically designed to work with the sequential nature of text data. Our writer-adaptive MetaHTR framework can be easily implemented on the top of most state-of-the-art HTR models. Experiments show an average performance gain of 5-7% can be obtained by observing very few new style data (≤ 16).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
layne发布了新的文献求助30
1秒前
1秒前
www完成签到 ,获得积分10
2秒前
2秒前
wwc完成签到,获得积分10
3秒前
满满完成签到 ,获得积分20
3秒前
立秋呀发布了新的文献求助10
3秒前
4秒前
xiaoxiao发布了新的文献求助10
4秒前
5秒前
你听风在吹完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
科研通AI5应助秋水采纳,获得10
7秒前
8秒前
9秒前
9秒前
9秒前
Frank完成签到,获得积分10
9秒前
研究牲发布了新的文献求助10
9秒前
豆壳儿完成签到 ,获得积分10
10秒前
今后应助科研通管家采纳,获得10
10秒前
苏卿应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
小园饼干应助科研通管家采纳,获得10
10秒前
10秒前
苏卿应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
苏卿应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
小白应助科研通管家采纳,获得20
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
ylky完成签到 ,获得积分10
11秒前
潘道士完成签到 ,获得积分10
11秒前
11秒前
帅气的藏鸟完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662487
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750825
捐赠科研通 2933130
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743