已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GSAN: Graph Self-Attention Network for Learning Spatial–Temporal Interaction Representation in Autonomous Driving

特征学习 图形 注意力网络 代表(政治) 任务(项目管理) 人机交互 卷积神经网络
作者
Luyao Ye,Zezhong Wang,Xinhong Chen,Jianping Wang,Kui Wu,Kejie Lu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9190-9204 被引量:8
标识
DOI:10.1109/jiot.2021.3093523
摘要

Modeling interactions among vehicles is critical in improving the efficiency and safety of autonomous driving since complex interactions are ubiquitous in many traffic scenarios. To model interactions under different traffic scenarios, most existing works consider interaction information implicitly in their specific tasks with hand-crafted features and predefined maneuvers. Extracting interaction representation, which can be commonly used among different downstream tasks, is not explored. In this article, we propose a general and novel graph self-attention network (GSAN) to learn the spatial–temporal interaction representation among vehicles by a framework consisting of pretraining and fine-tuning. Specifically, in the pretraining step, we construct the GSAN module based on a graph self-attention layer and a gated recurrent unit layer, and use trajectory autoregression to learn the interaction information among vehicles. In the fine-tuning step, we propose two different adaptation schemes to utilize the learned interaction information in various downstream tasks and fine-tune the entire model with only a few steps. To illustrate the effectiveness and generality of our spatial–temporal interaction model, we conduct extensive experiments on two typical interaction-related tasks, namely, lane-changing classification and trajectory prediction. The experiment results demonstrate that our approach significantly outperforms the state-of-the-art solutions of these two tasks. We also visualize the impact of surrounding vehicles on the ego vehicle in different interaction scenes. The visualization offers an intuitive explanation on how our model captures the dynamic changing interactions among vehicles and makes good predictions in various interaction-related tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
3秒前
ying发布了新的文献求助10
3秒前
lizibelle发布了新的文献求助10
3秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
20秒前
迷路的初柔完成签到 ,获得积分10
22秒前
24秒前
wu完成签到,获得积分10
26秒前
孤独含蕾完成签到 ,获得积分10
28秒前
SAXA完成签到,获得积分10
30秒前
斯文麦片完成签到 ,获得积分10
31秒前
称心如意完成签到 ,获得积分10
31秒前
小白白发布了新的文献求助10
31秒前
btsforever完成签到 ,获得积分10
35秒前
m鹿m嘟啦完成签到 ,获得积分20
36秒前
共享精神应助zakarya采纳,获得10
40秒前
GQ完成签到,获得积分10
42秒前
xiaojian_291完成签到,获得积分10
47秒前
所所应助lizibelle采纳,获得10
54秒前
59秒前
Wish完成签到,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
kk发布了新的文献求助10
1分钟前
liu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lizibelle完成签到,获得积分20
1分钟前
旭晓完成签到 ,获得积分10
1分钟前
1分钟前
zsp发布了新的文献求助10
1分钟前
胡萝卜发布了新的文献求助10
1分钟前
1分钟前
liu完成签到,获得积分10
1分钟前
1分钟前
sa完成签到 ,获得积分10
1分钟前
zsp完成签到,获得积分10
1分钟前
zz完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176