GSAN: Graph Self-Attention Network for Learning Spatial–Temporal Interaction Representation in Autonomous Driving

特征学习 图形 注意力网络 代表(政治) 任务(项目管理) 人机交互 卷积神经网络
作者
Luyao Ye,Zezhong Wang,Xinhong Chen,Jianping Wang,Kui Wu,Kejie Lu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9190-9204 被引量:8
标识
DOI:10.1109/jiot.2021.3093523
摘要

Modeling interactions among vehicles is critical in improving the efficiency and safety of autonomous driving since complex interactions are ubiquitous in many traffic scenarios. To model interactions under different traffic scenarios, most existing works consider interaction information implicitly in their specific tasks with hand-crafted features and predefined maneuvers. Extracting interaction representation, which can be commonly used among different downstream tasks, is not explored. In this article, we propose a general and novel graph self-attention network (GSAN) to learn the spatial–temporal interaction representation among vehicles by a framework consisting of pretraining and fine-tuning. Specifically, in the pretraining step, we construct the GSAN module based on a graph self-attention layer and a gated recurrent unit layer, and use trajectory autoregression to learn the interaction information among vehicles. In the fine-tuning step, we propose two different adaptation schemes to utilize the learned interaction information in various downstream tasks and fine-tune the entire model with only a few steps. To illustrate the effectiveness and generality of our spatial–temporal interaction model, we conduct extensive experiments on two typical interaction-related tasks, namely, lane-changing classification and trajectory prediction. The experiment results demonstrate that our approach significantly outperforms the state-of-the-art solutions of these two tasks. We also visualize the impact of surrounding vehicles on the ego vehicle in different interaction scenes. The visualization offers an intuitive explanation on how our model captures the dynamic changing interactions among vehicles and makes good predictions in various interaction-related tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Tt完成签到,获得积分10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
cocolu应助科研通管家采纳,获得10
3秒前
CodeCraft应助kerry采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
cocolu应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
似水流年完成签到 ,获得积分10
4秒前
5秒前
秦月未完完成签到,获得积分10
5秒前
鱼秋完成签到,获得积分10
5秒前
zyy6657完成签到,获得积分10
5秒前
会魔法的老人完成签到,获得积分10
5秒前
6秒前
神宝宝发布了新的文献求助10
6秒前
科研通AI2S应助小邹采纳,获得10
8秒前
科研通AI2S应助小邹采纳,获得10
8秒前
阿嘎普莱特完成签到,获得积分10
8秒前
凡仔发布了新的文献求助10
8秒前
8秒前
我是谁发布了新的文献求助10
9秒前
我爱学习发布了新的文献求助10
10秒前
Becky完成签到,获得积分10
10秒前
大聪完成签到 ,获得积分10
10秒前
11秒前
小彤完成签到 ,获得积分10
12秒前
12秒前
13秒前
GongSyi完成签到 ,获得积分10
13秒前
14秒前
18秒前
个性的振家完成签到,获得积分10
19秒前
小白完成签到 ,获得积分10
22秒前
FashionBoy应助一个橘子采纳,获得10
24秒前
勤奋幻柏完成签到,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308414
求助须知:如何正确求助?哪些是违规求助? 2941779
关于积分的说明 8505616
捐赠科研通 2616610
什么是DOI,文献DOI怎么找? 1429744
科研通“疑难数据库(出版商)”最低求助积分说明 663869
邀请新用户注册赠送积分活动 648898