Machine Learning Analysis of Time-Dependent Features for Predicting Adverse Events During Hemodialysis Therapy: Model Development and Validation Study

不利影响 医学 血液透析 透析 急诊医学 介绍 重症监护医学 物理疗法 内科学 家庭医学
作者
Yi‐Shiuan Liu,Chi‐Rei Yang,Ping Fang Chiu,Huapeng Lin,Chung-Chuan Lo,Alan Lai,Chi‐Ching Chang,Oscar K. Lee
出处
期刊:Journal of Medical Internet Research 卷期号:23 (9): e27098-e27098 被引量:6
标识
DOI:10.2196/27098
摘要

Hemodialysis (HD) therapy is an indispensable tool used in critical care management. Patients undergoing HD are at risk for intradialytic adverse events, ranging from muscle cramps to cardiac arrest. So far, there is no effective HD device-integrated algorithm to assist medical staff in response to these adverse events a step earlier during HD.We aimed to develop machine learning algorithms to predict intradialytic adverse events in an unbiased manner.Three-month dialysis and physiological time-series data were collected from all patients who underwent maintenance HD therapy at a tertiary care referral center. Dialysis data were collected automatically by HD devices, and physiological data were recorded by medical staff. Intradialytic adverse events were documented by medical staff according to patient complaints. Features extracted from the time series data sets by linear and differential analyses were used for machine learning to predict adverse events during HD.Time series dialysis data were collected during the 4-hour HD session in 108 patients who underwent maintenance HD therapy. There were a total of 4221 HD sessions, 406 of which involved at least one intradialytic adverse event. Models were built by classification algorithms and evaluated by four-fold cross-validation. The developed algorithm predicted overall intradialytic adverse events, with an area under the curve (AUC) of 0.83, sensitivity of 0.53, and specificity of 0.96. The algorithm also predicted muscle cramps, with an AUC of 0.85, and blood pressure elevation, with an AUC of 0.93. In addition, the model built based on ultrafiltration-unrelated features predicted all types of adverse events, with an AUC of 0.81, indicating that ultrafiltration-unrelated factors also contribute to the onset of adverse events.Our results demonstrated that algorithms combining linear and differential analyses with two-class classification machine learning can predict intradialytic adverse events in quasi-real time with high AUCs. Such a methodology implemented with local cloud computation and real-time optimization by personalized HD data could warn clinicians to take timely actions in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肖思羽发布了新的文献求助10
2秒前
Ava应助整齐的不评采纳,获得10
3秒前
kk发布了新的文献求助10
3秒前
东方发布了新的文献求助10
4秒前
鹤辞关注了科研通微信公众号
4秒前
dongdongqiang完成签到,获得积分10
5秒前
5秒前
chaosyw完成签到,获得积分10
5秒前
韦霁滢发布了新的文献求助20
6秒前
pphhhhaannn完成签到,获得积分10
6秒前
6秒前
善学以致用应助清爽灰狼采纳,获得10
6秒前
入江直熠完成签到 ,获得积分10
6秒前
Jiang完成签到,获得积分10
6秒前
欢呼的棒棒糖完成签到,获得积分10
6秒前
harina发布了新的文献求助10
7秒前
Toby完成签到 ,获得积分10
7秒前
kermitds完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
肖思羽完成签到,获得积分10
8秒前
8秒前
叁金完成签到,获得积分10
8秒前
JY完成签到,获得积分10
9秒前
9秒前
杰Sir完成签到,获得积分10
10秒前
10秒前
10秒前
是毛果芸香碱完成签到,获得积分10
11秒前
贪玩小小完成签到 ,获得积分10
11秒前
追寻咖啡豆完成签到 ,获得积分10
11秒前
12秒前
Chief完成签到,获得积分10
12秒前
SevenKing完成签到,获得积分10
12秒前
甜甜醉波发布了新的文献求助10
13秒前
Liu发布了新的文献求助20
13秒前
yck留下了新的社区评论
13秒前
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167451
求助须知:如何正确求助?哪些是违规求助? 2818967
关于积分的说明 7923963
捐赠科研通 2478773
什么是DOI,文献DOI怎么找? 1320495
科研通“疑难数据库(出版商)”最低求助积分说明 632806
版权声明 602443