已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Analysis of Time-Dependent Features for Predicting Adverse Events During Hemodialysis Therapy: Model Development and Validation Study

不利影响 医学 血液透析 透析 急诊医学 介绍 重症监护医学 物理疗法 内科学 家庭医学
作者
Yi‐Shiuan Liu,Chih‐Yu Yang,Chiu‐Ping Fang,H. Lin,Chung-Chuan Lo,Alan Lai,Chia‐Chu Chang,Oscar K. Lee
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (9): e27098-e27098 被引量:12
标识
DOI:10.2196/27098
摘要

Hemodialysis (HD) therapy is an indispensable tool used in critical care management. Patients undergoing HD are at risk for intradialytic adverse events, ranging from muscle cramps to cardiac arrest. So far, there is no effective HD device-integrated algorithm to assist medical staff in response to these adverse events a step earlier during HD.We aimed to develop machine learning algorithms to predict intradialytic adverse events in an unbiased manner.Three-month dialysis and physiological time-series data were collected from all patients who underwent maintenance HD therapy at a tertiary care referral center. Dialysis data were collected automatically by HD devices, and physiological data were recorded by medical staff. Intradialytic adverse events were documented by medical staff according to patient complaints. Features extracted from the time series data sets by linear and differential analyses were used for machine learning to predict adverse events during HD.Time series dialysis data were collected during the 4-hour HD session in 108 patients who underwent maintenance HD therapy. There were a total of 4221 HD sessions, 406 of which involved at least one intradialytic adverse event. Models were built by classification algorithms and evaluated by four-fold cross-validation. The developed algorithm predicted overall intradialytic adverse events, with an area under the curve (AUC) of 0.83, sensitivity of 0.53, and specificity of 0.96. The algorithm also predicted muscle cramps, with an AUC of 0.85, and blood pressure elevation, with an AUC of 0.93. In addition, the model built based on ultrafiltration-unrelated features predicted all types of adverse events, with an AUC of 0.81, indicating that ultrafiltration-unrelated factors also contribute to the onset of adverse events.Our results demonstrated that algorithms combining linear and differential analyses with two-class classification machine learning can predict intradialytic adverse events in quasi-real time with high AUCs. Such a methodology implemented with local cloud computation and real-time optimization by personalized HD data could warn clinicians to take timely actions in advance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234发布了新的文献求助20
1秒前
李某某应助ceeray23采纳,获得20
2秒前
2秒前
无极微光应助闪闪的熠彤采纳,获得20
2秒前
鱿鱼丝一种天赋完成签到,获得积分20
2秒前
3秒前
3秒前
钟梓袄完成签到,获得积分10
3秒前
rsd发布了新的文献求助10
6秒前
夏惋清完成签到 ,获得积分0
7秒前
yybo完成签到,获得积分10
8秒前
小立发布了新的文献求助10
8秒前
8秒前
碎冰蓝完成签到 ,获得积分10
9秒前
CJ发布了新的文献求助20
10秒前
imagine完成签到,获得积分10
13秒前
dentistG完成签到,获得积分20
13秒前
17秒前
17秒前
一碗晚月完成签到,获得积分10
18秒前
AneyWinter66完成签到,获得积分10
18秒前
坚定的跳跳糖完成签到 ,获得积分10
21秒前
可颂发布了新的文献求助10
22秒前
27秒前
CJ完成签到,获得积分10
27秒前
上官若男应助djfnuv采纳,获得10
28秒前
orixero应助陈梦鼠采纳,获得10
28秒前
ATEVYG完成签到 ,获得积分10
28秒前
烟花应助YuLu采纳,获得10
29秒前
31秒前
小葵花完成签到 ,获得积分10
32秒前
FashionBoy应助dentistG采纳,获得10
32秒前
xc发布了新的文献求助10
33秒前
34秒前
35秒前
pluto应助CChi0923采纳,获得10
37秒前
胖豆发布了新的文献求助10
37秒前
CodeCraft应助自由的冬易采纳,获得10
37秒前
111231发布了新的文献求助10
38秒前
Lucas应助好好学习采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602854
求助须知:如何正确求助?哪些是违规求助? 4688078
关于积分的说明 14852191
捐赠科研通 4686208
什么是DOI,文献DOI怎么找? 2540259
邀请新用户注册赠送积分活动 1506881
关于科研通互助平台的介绍 1471458