Machine Learning Analysis of Time-Dependent Features for Predicting Adverse Events During Hemodialysis Therapy: Model Development and Validation Study

不利影响 医学 血液透析 透析 急诊医学 介绍 重症监护医学 物理疗法 内科学 家庭医学
作者
Yi‐Shiuan Liu,Chih‐Yu Yang,Chiu‐Ping Fang,H. Lin,Chung-Chuan Lo,Alan Lai,Chia‐Chu Chang,Oscar K. Lee
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (9): e27098-e27098 被引量:12
标识
DOI:10.2196/27098
摘要

Hemodialysis (HD) therapy is an indispensable tool used in critical care management. Patients undergoing HD are at risk for intradialytic adverse events, ranging from muscle cramps to cardiac arrest. So far, there is no effective HD device-integrated algorithm to assist medical staff in response to these adverse events a step earlier during HD.We aimed to develop machine learning algorithms to predict intradialytic adverse events in an unbiased manner.Three-month dialysis and physiological time-series data were collected from all patients who underwent maintenance HD therapy at a tertiary care referral center. Dialysis data were collected automatically by HD devices, and physiological data were recorded by medical staff. Intradialytic adverse events were documented by medical staff according to patient complaints. Features extracted from the time series data sets by linear and differential analyses were used for machine learning to predict adverse events during HD.Time series dialysis data were collected during the 4-hour HD session in 108 patients who underwent maintenance HD therapy. There were a total of 4221 HD sessions, 406 of which involved at least one intradialytic adverse event. Models were built by classification algorithms and evaluated by four-fold cross-validation. The developed algorithm predicted overall intradialytic adverse events, with an area under the curve (AUC) of 0.83, sensitivity of 0.53, and specificity of 0.96. The algorithm also predicted muscle cramps, with an AUC of 0.85, and blood pressure elevation, with an AUC of 0.93. In addition, the model built based on ultrafiltration-unrelated features predicted all types of adverse events, with an AUC of 0.81, indicating that ultrafiltration-unrelated factors also contribute to the onset of adverse events.Our results demonstrated that algorithms combining linear and differential analyses with two-class classification machine learning can predict intradialytic adverse events in quasi-real time with high AUCs. Such a methodology implemented with local cloud computation and real-time optimization by personalized HD data could warn clinicians to take timely actions in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助李白采纳,获得10
刚刚
CodeCraft应助Ttt采纳,获得10
刚刚
1秒前
1秒前
时尚的电脑完成签到 ,获得积分10
1秒前
紫心发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
张两丰完成签到,获得积分10
4秒前
4秒前
椿·完成签到,获得积分10
4秒前
隐形的紫菜完成签到,获得积分10
4秒前
烤地瓜要吃甜完成签到,获得积分10
4秒前
5秒前
阿嘎普莱特完成签到,获得积分10
5秒前
frank发布了新的文献求助10
6秒前
聪慧皓轩完成签到,获得积分20
6秒前
zz发布了新的文献求助10
6秒前
6秒前
LuciusHe发布了新的文献求助20
7秒前
7秒前
琳琳发布了新的文献求助10
7秒前
7秒前
7秒前
科目三应助dandan采纳,获得10
8秒前
橙子发布了新的文献求助10
8秒前
wanci应助典雅的俊驰采纳,获得10
8秒前
fancy发布了新的文献求助10
9秒前
Zxxxxxxx发布了新的文献求助10
9秒前
9秒前
Ttt完成签到,获得积分10
10秒前
11秒前
AJY发布了新的文献求助10
11秒前
俏皮面包发布了新的文献求助10
12秒前
小橙子发布了新的文献求助10
12秒前
13秒前
gao发布了新的文献求助10
13秒前
隐形曼青应助昂口3采纳,获得10
13秒前
虚幻沛菡发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326