Machine-learning insights into nitrate-reducing communities in a full-scale municipal wastewater treatment plant

缺氧水域 污水处理 硝酸盐 环境科学 支持向量机 废水 超参数优化 生态学 机器学习 生化工程 计算机科学 环境工程 生物 工程类
作者
Youngjun Kim,Seungdae Oh
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:300: 113795-113795 被引量:38
标识
DOI:10.1016/j.jenvman.2021.113795
摘要

This study carried out machine-learning (ML) modeling using activated sludge microbiome data to predict the operational characteristics of biological unit processes (i.e., anaerobic, anoxic, and aerobic) in a full-scale municipal wastewater treatment plant. An ML application pipeline with optimization strategies (e.g., model selection, input data preprocessing, and hyperparameter tuning) could significantly improve prediction performance. Comparative analysis of the ML prediction performance suggested that linear models (support vector machine and logistic regression) had a high prediction performance (93% accuracy), comparable to that of non-linear models such as random forest. Feature importance analysis using the linear ML models identified the microbial taxa that were specifically associated with anoxic processes, many of which (e.g., Ferruginibacter) were found to have ecologically important genomic and phenotypic characteristics (e.g., for nitrate reduction). Time-series microbial community dynamics demonstrated that the taxa identified using ML were frequently occurring and dominating in the anoxic process over time, thus representing the core nitrate-reducing community. Despite the general dominance of the core community over time, the analysis further revealed successional seasonal patterns of distinct sub-groups, indicating differences in the functional contribution of sub-groups by season to the overall nitrate-reducing potential of the system. Overall, the results of this study suggest that ML modeling holds great promise for the predictive identification and understanding of key microbial players governing the functioning and stability of biological wastewater systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JY完成签到,获得积分10
刚刚
Shayulajiao发布了新的文献求助10
1秒前
Lawgh发布了新的文献求助10
1秒前
1秒前
芝芝莓莓完成签到,获得积分10
2秒前
范小楠完成签到,获得积分10
2秒前
YYiijj完成签到 ,获得积分10
2秒前
舒适若颜发布了新的文献求助10
3秒前
4秒前
三金发布了新的文献求助50
4秒前
5秒前
成就猫咪完成签到,获得积分10
5秒前
AA完成签到,获得积分10
6秒前
求求你了完成签到,获得积分20
7秒前
情怀应助菜菜采纳,获得10
9秒前
9秒前
顾矜应助eternal_dreams采纳,获得10
9秒前
Cyrus完成签到 ,获得积分10
9秒前
含糊的尔槐完成签到,获得积分10
10秒前
情怀应助舒适若颜采纳,获得10
11秒前
13秒前
毛豆应助LCct采纳,获得10
13秒前
14秒前
15秒前
求求你了发布了新的文献求助30
18秒前
18秒前
20秒前
111完成签到,获得积分10
20秒前
20秒前
20秒前
舒适若颜完成签到,获得积分20
22秒前
watermanlo发布了新的文献求助10
23秒前
23秒前
哈哈哈嘿完成签到 ,获得积分10
23秒前
科研小可怜完成签到,获得积分10
24秒前
25秒前
Cloud发布了新的文献求助10
26秒前
充电宝应助111采纳,获得10
26秒前
老实觅松完成签到 ,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458562
求助须知:如何正确求助?哪些是违规求助? 3053394
关于积分的说明 9036264
捐赠科研通 2742665
什么是DOI,文献DOI怎么找? 1504448
科研通“疑难数据库(出版商)”最低求助积分说明 695292
邀请新用户注册赠送积分活动 694455