Fracture Permeability Estimation Under Complex Physics: A Data-Driven Model Using Machine Learning

计算机科学 替代模型 拉丁超立方体抽样 人工智能 机器学习 算法 人工神经网络 不确定度量化 非线性系统 工作流程 曲折 蒙特卡罗方法 数学 工程类 岩土工程 多孔性 物理 统计 数据库 量子力学
作者
Xupeng He,Weiwei Zhu,Ryan Santoso,Marwa Alsinan,Hyung Kwak,Hussein Hoteit
标识
DOI:10.2118/206352-ms
摘要

Abstract The permeability of fractures, including natural and hydraulic, are essential parameters for the modeling of fluid flow in conventional and unconventional fractured reservoirs. However, traditional analytical cubic law (CL-based) models used to estimate fracture permeability show unsatisfactory performance when dealing with different dynamic complexities of fractures. This work presents a data-driven, physics-included model based on machine learning as an alternative to traditional methods. The workflow for the development of the data-driven model includes four steps. Step 1: Identify uncertain parameters and perform Latin Hypercube Sampling (LHS). We first identify the uncertain parameters which affect the fracture permeability. We then generate training samples using LHS. Step 2: Perform training simulations and collect inputs and outputs. In this step, high-resolution simulations with parallel computing for the Navier-Stokes equations (NSEs) are run for each of the training samples. We then collect the inputs and outputs from the simulations. Step 3: Construct an optimized data-driven surrogate model. A data-driven model based on machine learning is then built to model the nonlinear mapping between the inputs and outputs collected from Step 2. Herein, Artificial Neural Network (ANN) coupling with Bayesian optimization algorithm is implemented to obtain the optimized surrogate model. Step 4: Validate the proposed data-driven model. In this step, we conduct blind validation on the proposed model with high-fidelity simulations. We further test the developed surrogate model with newly generated fracture cases with a broad range of roughness and tortuosity under different Reynolds numbers. We then compare its performance to the reference NSEs solutions. Results show that the developed data-driven model delivers good accuracy exceeding 90% for all training, validation, and test samples. This work introduces an integrated workflow for developing a data-driven, physics-included model using machine learning to estimate fracture permeability under complex physics (e.g., inertial effect). To our knowledge, this technique is introduced for the first time for the upscaling of rock fractures. The proposed model offers an efficient and accurate alternative to the traditional upscaling methods that can be readily implemented in reservoir characterization and modeling workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助hui采纳,获得10
刚刚
changnan完成签到,获得积分20
2秒前
潇湘雪月完成签到,获得积分10
4秒前
深情安青应助琢钰采纳,获得10
4秒前
112发布了新的文献求助10
4秒前
5秒前
情怀应助Qssai采纳,获得10
7秒前
笑相完成签到,获得积分10
7秒前
changnan发布了新的文献求助10
7秒前
8秒前
Ni发布了新的文献求助10
9秒前
10秒前
10秒前
呼呼发布了新的文献求助10
11秒前
hulian发布了新的文献求助10
12秒前
零可林应助悬铃木采纳,获得10
12秒前
13秒前
13秒前
13秒前
临床菜鸟完成签到 ,获得积分10
13秒前
14秒前
长情萤完成签到,获得积分10
14秒前
琢钰发布了新的文献求助10
14秒前
飞虎发布了新的文献求助10
15秒前
歪比巴卜发布了新的文献求助10
15秒前
阿良发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
19秒前
19秒前
天真璎完成签到,获得积分10
19秒前
靖宇发布了新的文献求助10
19秒前
曦颜发布了新的文献求助20
20秒前
Y神完成签到 ,获得积分10
21秒前
呼呼完成签到,获得积分10
21秒前
城南花已开完成签到,获得积分10
21秒前
汉堡包应助歪比巴卜采纳,获得10
21秒前
wyh3218完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527