亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fracture Permeability Estimation Under Complex Physics: A Data-Driven Model Using Machine Learning

计算机科学 替代模型 拉丁超立方体抽样 人工智能 机器学习 算法 人工神经网络 不确定度量化 非线性系统 工作流程 曲折 蒙特卡罗方法 数学 工程类 岩土工程 多孔性 物理 统计 数据库 量子力学
作者
Xupeng He,Weiwei Zhu,Ryan Santoso,Marwa Alsinan,Hyung Kwak,Hussein Hoteit
标识
DOI:10.2118/206352-ms
摘要

Abstract The permeability of fractures, including natural and hydraulic, are essential parameters for the modeling of fluid flow in conventional and unconventional fractured reservoirs. However, traditional analytical cubic law (CL-based) models used to estimate fracture permeability show unsatisfactory performance when dealing with different dynamic complexities of fractures. This work presents a data-driven, physics-included model based on machine learning as an alternative to traditional methods. The workflow for the development of the data-driven model includes four steps. Step 1: Identify uncertain parameters and perform Latin Hypercube Sampling (LHS). We first identify the uncertain parameters which affect the fracture permeability. We then generate training samples using LHS. Step 2: Perform training simulations and collect inputs and outputs. In this step, high-resolution simulations with parallel computing for the Navier-Stokes equations (NSEs) are run for each of the training samples. We then collect the inputs and outputs from the simulations. Step 3: Construct an optimized data-driven surrogate model. A data-driven model based on machine learning is then built to model the nonlinear mapping between the inputs and outputs collected from Step 2. Herein, Artificial Neural Network (ANN) coupling with Bayesian optimization algorithm is implemented to obtain the optimized surrogate model. Step 4: Validate the proposed data-driven model. In this step, we conduct blind validation on the proposed model with high-fidelity simulations. We further test the developed surrogate model with newly generated fracture cases with a broad range of roughness and tortuosity under different Reynolds numbers. We then compare its performance to the reference NSEs solutions. Results show that the developed data-driven model delivers good accuracy exceeding 90% for all training, validation, and test samples. This work introduces an integrated workflow for developing a data-driven, physics-included model using machine learning to estimate fracture permeability under complex physics (e.g., inertial effect). To our knowledge, this technique is introduced for the first time for the upscaling of rock fractures. The proposed model offers an efficient and accurate alternative to the traditional upscaling methods that can be readily implemented in reservoir characterization and modeling workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xingkun_li完成签到,获得积分10
9秒前
19秒前
Arueliano完成签到,获得积分10
23秒前
Marshall发布了新的文献求助10
25秒前
Marshall完成签到,获得积分10
33秒前
沉甸甸完成签到,获得积分10
34秒前
37秒前
NINI完成签到 ,获得积分10
1分钟前
小小虾完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
觅松发布了新的文献求助10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
sweet1完成签到,获得积分10
2分钟前
李爱国应助Olivergaga采纳,获得10
3分钟前
Fairy完成签到,获得积分10
3分钟前
3分钟前
Olivergaga发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
4分钟前
rainy完成签到,获得积分10
5分钟前
rainy发布了新的文献求助10
5分钟前
zhrmghg521给zhrmghg521的求助进行了留言
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
111111完成签到,获得积分10
6分钟前
jjx1005发布了新的文献求助50
6分钟前
6分钟前
6分钟前
xiawanren00完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714851
求助须知:如何正确求助?哪些是违规求助? 5227581
关于积分的说明 15273752
捐赠科研通 4866025
什么是DOI,文献DOI怎么找? 2612602
邀请新用户注册赠送积分活动 1562787
关于科研通互助平台的介绍 1520051