Fracture Permeability Estimation Under Complex Physics: A Data-Driven Model Using Machine Learning

计算机科学 替代模型 拉丁超立方体抽样 人工智能 机器学习 算法 人工神经网络 不确定度量化 非线性系统 工作流程 曲折 蒙特卡罗方法 数学 工程类 岩土工程 多孔性 物理 统计 数据库 量子力学
作者
Xupeng He,Weiwei Zhu,Ryan Santoso,Marwa Alsinan,Hyung Kwak,Hussein Hoteit
标识
DOI:10.2118/206352-ms
摘要

Abstract The permeability of fractures, including natural and hydraulic, are essential parameters for the modeling of fluid flow in conventional and unconventional fractured reservoirs. However, traditional analytical cubic law (CL-based) models used to estimate fracture permeability show unsatisfactory performance when dealing with different dynamic complexities of fractures. This work presents a data-driven, physics-included model based on machine learning as an alternative to traditional methods. The workflow for the development of the data-driven model includes four steps. Step 1: Identify uncertain parameters and perform Latin Hypercube Sampling (LHS). We first identify the uncertain parameters which affect the fracture permeability. We then generate training samples using LHS. Step 2: Perform training simulations and collect inputs and outputs. In this step, high-resolution simulations with parallel computing for the Navier-Stokes equations (NSEs) are run for each of the training samples. We then collect the inputs and outputs from the simulations. Step 3: Construct an optimized data-driven surrogate model. A data-driven model based on machine learning is then built to model the nonlinear mapping between the inputs and outputs collected from Step 2. Herein, Artificial Neural Network (ANN) coupling with Bayesian optimization algorithm is implemented to obtain the optimized surrogate model. Step 4: Validate the proposed data-driven model. In this step, we conduct blind validation on the proposed model with high-fidelity simulations. We further test the developed surrogate model with newly generated fracture cases with a broad range of roughness and tortuosity under different Reynolds numbers. We then compare its performance to the reference NSEs solutions. Results show that the developed data-driven model delivers good accuracy exceeding 90% for all training, validation, and test samples. This work introduces an integrated workflow for developing a data-driven, physics-included model using machine learning to estimate fracture permeability under complex physics (e.g., inertial effect). To our knowledge, this technique is introduced for the first time for the upscaling of rock fractures. The proposed model offers an efficient and accurate alternative to the traditional upscaling methods that can be readily implemented in reservoir characterization and modeling workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到 ,获得积分10
刚刚
旁白发布了新的文献求助10
1秒前
2秒前
@你。完成签到 ,获得积分10
2秒前
Ava应助井莹采纳,获得10
4秒前
直率书芹完成签到,获得积分10
4秒前
perfect完成签到 ,获得积分10
7秒前
8秒前
小芳芳完成签到 ,获得积分10
9秒前
柒月发布了新的文献求助10
12秒前
萝卜猪完成签到,获得积分10
13秒前
123应助寒冷的断秋采纳,获得10
13秒前
14秒前
南宫清涟完成签到 ,获得积分10
16秒前
YOMU完成签到,获得积分10
16秒前
炙热的萤完成签到,获得积分20
16秒前
17秒前
Dream完成签到,获得积分0
19秒前
张颖完成签到 ,获得积分10
19秒前
19秒前
炙热的萤发布了新的文献求助10
20秒前
加减乘除发布了新的文献求助10
20秒前
深情口红完成签到,获得积分10
20秒前
企鹅公路关注了科研通微信公众号
20秒前
fzm完成签到,获得积分10
21秒前
英俊枫完成签到,获得积分10
22秒前
couletian完成签到 ,获得积分10
22秒前
暴富完成签到,获得积分10
22秒前
坚定龙猫完成签到,获得积分10
24秒前
沙与沫完成签到 ,获得积分10
24秒前
more完成签到,获得积分10
24秒前
Leo发布了新的文献求助10
25秒前
25秒前
25秒前
木南大宝完成签到 ,获得积分10
26秒前
李健应助Leo采纳,获得10
28秒前
29秒前
井莹发布了新的文献求助10
29秒前
等待思远发布了新的文献求助10
30秒前
加减乘除完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162539
求助须知:如何正确求助?哪些是违规求助? 2813402
关于积分的说明 7900247
捐赠科研通 2472973
什么是DOI,文献DOI怎么找? 1316615
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175