Fracture Permeability Estimation Under Complex Physics: A Data-Driven Model Using Machine Learning

计算机科学 替代模型 拉丁超立方体抽样 人工智能 机器学习 算法 人工神经网络 不确定度量化 非线性系统 工作流程 曲折 蒙特卡罗方法 数学 工程类 岩土工程 多孔性 物理 统计 数据库 量子力学
作者
Xupeng He,Weiwei Zhu,Ryan Santoso,Marwa Alsinan,Hyung Kwak,Hussein Hoteit
标识
DOI:10.2118/206352-ms
摘要

Abstract The permeability of fractures, including natural and hydraulic, are essential parameters for the modeling of fluid flow in conventional and unconventional fractured reservoirs. However, traditional analytical cubic law (CL-based) models used to estimate fracture permeability show unsatisfactory performance when dealing with different dynamic complexities of fractures. This work presents a data-driven, physics-included model based on machine learning as an alternative to traditional methods. The workflow for the development of the data-driven model includes four steps. Step 1: Identify uncertain parameters and perform Latin Hypercube Sampling (LHS). We first identify the uncertain parameters which affect the fracture permeability. We then generate training samples using LHS. Step 2: Perform training simulations and collect inputs and outputs. In this step, high-resolution simulations with parallel computing for the Navier-Stokes equations (NSEs) are run for each of the training samples. We then collect the inputs and outputs from the simulations. Step 3: Construct an optimized data-driven surrogate model. A data-driven model based on machine learning is then built to model the nonlinear mapping between the inputs and outputs collected from Step 2. Herein, Artificial Neural Network (ANN) coupling with Bayesian optimization algorithm is implemented to obtain the optimized surrogate model. Step 4: Validate the proposed data-driven model. In this step, we conduct blind validation on the proposed model with high-fidelity simulations. We further test the developed surrogate model with newly generated fracture cases with a broad range of roughness and tortuosity under different Reynolds numbers. We then compare its performance to the reference NSEs solutions. Results show that the developed data-driven model delivers good accuracy exceeding 90% for all training, validation, and test samples. This work introduces an integrated workflow for developing a data-driven, physics-included model using machine learning to estimate fracture permeability under complex physics (e.g., inertial effect). To our knowledge, this technique is introduced for the first time for the upscaling of rock fractures. The proposed model offers an efficient and accurate alternative to the traditional upscaling methods that can be readily implemented in reservoir characterization and modeling workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到,获得积分20
刚刚
Jasper应助冷静白亦采纳,获得10
1秒前
拉普拉斯妖完成签到,获得积分10
2秒前
谢志超发布了新的文献求助10
3秒前
13981592626发布了新的文献求助10
4秒前
13981592626发布了新的文献求助10
4秒前
13981592626发布了新的文献求助10
4秒前
13981592626发布了新的文献求助10
4秒前
零零发布了新的文献求助10
5秒前
mirror关注了科研通微信公众号
7秒前
8秒前
调皮小蘑菇完成签到,获得积分10
11秒前
谢志超完成签到,获得积分10
11秒前
谢鸿宇完成签到,获得积分10
13秒前
13秒前
玺白白发布了新的文献求助10
13秒前
科研通AI5应助soyorin采纳,获得10
13秒前
14秒前
14秒前
17秒前
yy应助爱听歌的书双采纳,获得10
17秒前
科研通AI5应助迅速的鸽子采纳,获得10
17秒前
COCONUT完成签到,获得积分10
18秒前
DS发布了新的文献求助10
18秒前
隐形的谷槐完成签到 ,获得积分10
19秒前
llll发布了新的文献求助10
20秒前
lwt完成签到,获得积分20
21秒前
义气千风完成签到,获得积分10
21秒前
壮观安寒完成签到 ,获得积分10
22秒前
充电宝应助HP采纳,获得20
22秒前
所所应助执着的导师采纳,获得10
23秒前
25秒前
25秒前
胡萝卜叶子完成签到,获得积分10
28秒前
28秒前
29秒前
王子倩完成签到,获得积分10
29秒前
无敌脉冲黄桃完成签到,获得积分20
29秒前
29秒前
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133459
求助须知:如何正确求助?哪些是违规求助? 4334575
关于积分的说明 13504156
捐赠科研通 4171584
什么是DOI,文献DOI怎么找? 2287247
邀请新用户注册赠送积分活动 1288151
关于科研通互助平台的介绍 1228995