Fracture Permeability Estimation Under Complex Physics: A Data-Driven Model Using Machine Learning

计算机科学 替代模型 拉丁超立方体抽样 人工智能 机器学习 算法 人工神经网络 不确定度量化 非线性系统 工作流程 曲折 蒙特卡罗方法 数学 工程类 岩土工程 多孔性 物理 统计 数据库 量子力学
作者
Xupeng He,Weiwei Zhu,Ryan Santoso,Marwa Alsinan,Hyung Kwak,Hussein Hoteit
标识
DOI:10.2118/206352-ms
摘要

Abstract The permeability of fractures, including natural and hydraulic, are essential parameters for the modeling of fluid flow in conventional and unconventional fractured reservoirs. However, traditional analytical cubic law (CL-based) models used to estimate fracture permeability show unsatisfactory performance when dealing with different dynamic complexities of fractures. This work presents a data-driven, physics-included model based on machine learning as an alternative to traditional methods. The workflow for the development of the data-driven model includes four steps. Step 1: Identify uncertain parameters and perform Latin Hypercube Sampling (LHS). We first identify the uncertain parameters which affect the fracture permeability. We then generate training samples using LHS. Step 2: Perform training simulations and collect inputs and outputs. In this step, high-resolution simulations with parallel computing for the Navier-Stokes equations (NSEs) are run for each of the training samples. We then collect the inputs and outputs from the simulations. Step 3: Construct an optimized data-driven surrogate model. A data-driven model based on machine learning is then built to model the nonlinear mapping between the inputs and outputs collected from Step 2. Herein, Artificial Neural Network (ANN) coupling with Bayesian optimization algorithm is implemented to obtain the optimized surrogate model. Step 4: Validate the proposed data-driven model. In this step, we conduct blind validation on the proposed model with high-fidelity simulations. We further test the developed surrogate model with newly generated fracture cases with a broad range of roughness and tortuosity under different Reynolds numbers. We then compare its performance to the reference NSEs solutions. Results show that the developed data-driven model delivers good accuracy exceeding 90% for all training, validation, and test samples. This work introduces an integrated workflow for developing a data-driven, physics-included model using machine learning to estimate fracture permeability under complex physics (e.g., inertial effect). To our knowledge, this technique is introduced for the first time for the upscaling of rock fractures. The proposed model offers an efficient and accurate alternative to the traditional upscaling methods that can be readily implemented in reservoir characterization and modeling workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助刘星星采纳,获得10
1秒前
一只鱼完成签到,获得积分10
1秒前
YY发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
qianmo完成签到 ,获得积分10
1秒前
jennifercui发布了新的文献求助10
2秒前
rh1006完成签到,获得积分10
2秒前
mrjohn发布了新的文献求助10
2秒前
2秒前
YE完成签到 ,获得积分20
4秒前
李繁蕊发布了新的文献求助10
4秒前
4秒前
4秒前
可可完成签到,获得积分10
4秒前
5秒前
自由寻菱发布了新的文献求助20
6秒前
俏皮元珊发布了新的文献求助10
6秒前
Owen应助YY采纳,获得10
6秒前
优秀的逊发布了新的文献求助10
6秒前
wzm完成签到,获得积分10
7秒前
一年发3篇JACS完成签到,获得积分10
7秒前
7秒前
SciGPT应助木子采纳,获得10
8秒前
66完成签到,获得积分10
8秒前
赵鹏翔发布了新的文献求助10
8秒前
带象完成签到,获得积分10
8秒前
才露尖尖角完成签到,获得积分10
9秒前
幽默服饰完成签到 ,获得积分10
9秒前
芝士就是力量完成签到,获得积分10
9秒前
xr完成签到 ,获得积分10
9秒前
YaoX发布了新的文献求助10
10秒前
打打应助核桃采纳,获得10
10秒前
Porifera完成签到,获得积分10
10秒前
10秒前
笋蒸鱼发布了新的文献求助10
10秒前
余云开发布了新的文献求助50
11秒前
顾矜应助板凳采纳,获得10
11秒前
带象发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740