A piezoelectric MEMS microphone optimizer platform

微电子机械系统 压电 灵敏度(控制系统) 悬臂梁 话筒 声学 电子工程 材料科学 机械工程 计算机科学
作者
Ahmed Fawzy,Ahmed Magdy,Aya Hossam
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:61 (4): 3175-3186 被引量:1
标识
DOI:10.1016/j.aej.2021.08.044
摘要

Nowadays, the piezoelectric transduction mechanism has a great concern to be used in the (micro-electromechanical systems) MEMS microphones. In piezoelectric microphones, the thickness, length, width of the piezoelectric and electrode materials are key parameters that need to be optimized in the design loop. The sensitivity is also another vital design factor for MEMS microphones. One common scenario in modeling the sensitivity is to build an electrical equivalent model from lumped components in any simulator. This approach generally requires specialist design expertise and substantial time to build a complete equivalent model. In this paper, a powerful simulation platform to design high-performance cantilever piezoelectric MEMS microphones with sensitivity estimation has been presented. This simulation platform, called MEMS microphone optimizer platform (MMOP), can predict a wide range of key issues related to the successful design of a MEMS Microphone such as the optimum values of piezoelectric material thickness, electrode material thickness, and the length of a cantilever. MMOP offers also the capability to simulate sensitivity directly from the input parameters of the designed model. To validate the proposed simulation platform, a real model of a cantilever MEMS microphone has been studied. In the performed simulations and analysis, sweeping dimensions in micrometer have been considered to predict the best performance. In the proposed model, Aluminum nitride (AlN) and molybdenum (Mo) were utilized as the piezoelectric material and electrode materials, respectively. A high agreement has been found between the theoretical results and the output of the MMOP platform. The platform opens the door for a fast optimized design with accurate results. Finally, MMOP enables a designer to simulate key issues that are specific to cantilever MEMS microphones, including optimized thickness values and predicted sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kytlzq完成签到,获得积分10
1秒前
SciGPT应助春杪采纳,获得10
1秒前
1秒前
在水一方应助Youth采纳,获得10
1秒前
方方完成签到,获得积分10
1秒前
疗伤烧肉粽完成签到,获得积分10
2秒前
好好学习完成签到,获得积分10
2秒前
太阳想玉米完成签到 ,获得积分10
3秒前
3秒前
健壮不斜完成签到 ,获得积分10
4秒前
曲终人散完成签到,获得积分10
5秒前
Amanda柏发布了新的文献求助10
5秒前
可爱邓邓完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
梁_完成签到,获得积分10
7秒前
WEI完成签到,获得积分10
7秒前
南风完成签到,获得积分10
8秒前
领导范儿应助轻歌水越采纳,获得10
8秒前
jellyfish完成签到,获得积分10
8秒前
GT完成签到,获得积分10
9秒前
单身的钧完成签到 ,获得积分10
9秒前
不吃辣活不了完成签到 ,获得积分10
9秒前
然而完成签到 ,获得积分10
9秒前
黄紫红蓝完成签到,获得积分10
9秒前
满姣发布了新的文献求助10
9秒前
波比冰苏打完成签到,获得积分10
9秒前
耳朵儿歌完成签到,获得积分10
9秒前
星海完成签到,获得积分10
9秒前
Niar完成签到 ,获得积分10
10秒前
make217发布了新的文献求助30
10秒前
yi蔚完成签到 ,获得积分10
10秒前
MRM完成签到 ,获得积分10
10秒前
小枫完成签到,获得积分10
10秒前
YY完成签到 ,获得积分10
10秒前
2323完成签到,获得积分10
11秒前
Inspiring完成签到,获得积分10
11秒前
12秒前
俏皮诺言发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147003
求助须知:如何正确求助?哪些是违规求助? 2798336
关于积分的说明 7827807
捐赠科研通 2454956
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565