A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data

计算机科学 入侵检测系统 人工智能 机器学习 公制(单位) 数据挖掘 深度学习 入侵 方案(数学) 网络安全 计算机安全 工程类 地质学 数学分析 数学 运营管理 地球化学
作者
Zumin Wang,Ji-Yu Tian,Jing Qin,Hui Fang,Liming Chen
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2021: 1-17 被引量:19
标识
DOI:10.1155/2021/7126913
摘要

Network intrusion detection remains one of the major challenges in cybersecurity. In recent years, many machine-learning-based methods have been designed to capture the dynamic and complex intrusion patterns to improve the performance of intrusion detection systems. However, two issues, including imbalanced training data and new unknown attacks, still hinder the development of a reliable network intrusion detection system. In this paper, we propose a novel few-shot learning-based Siamese capsule network to tackle the scarcity of abnormal network traffic training data and enhance the detection of unknown attacks. In specific, the well-designed deep learning network excels at capturing dynamic relationships across traffic features. In addition, an unsupervised subtype sampling scheme is seamlessly integrated with the Siamese network to improve the detection of network intrusion attacks under the circumstance of imbalanced training data. Experimental results have demonstrated that the metric learning framework is more suitable to extract subtle and distinctive features to identify both known and unknown attacks after the sampling scheme compared to other supervised learning methods. Compared to the state-of-the-art methods, our proposed method achieves superior performance to effectively detect both types of attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
感谢黄老师转发科研通微信,获得积分50
1秒前
浮熙完成签到 ,获得积分10
1秒前
蛋宝完成签到,获得积分10
2秒前
WEIFENG发布了新的文献求助10
2秒前
3秒前
隐形曼青应助完美雪兰采纳,获得10
5秒前
5秒前
小鱼发布了新的文献求助30
5秒前
xiaowu应助114422采纳,获得10
6秒前
感谢大气半山转发科研通微信,获得积分50
6秒前
syqlyd完成签到 ,获得积分10
7秒前
魔幻的访云完成签到 ,获得积分10
7秒前
wangyi完成签到,获得积分10
7秒前
美琦完成签到,获得积分10
8秒前
北74发布了新的文献求助10
9秒前
松松完成签到 ,获得积分10
10秒前
ww发布了新的文献求助20
11秒前
11秒前
vetXue完成签到,获得积分10
11秒前
12秒前
曲无极完成签到 ,获得积分10
12秒前
感谢爱炸串的猫转发科研通微信,获得积分50
12秒前
完美世界应助简单而复杂采纳,获得10
14秒前
14秒前
15秒前
pengwenxuan完成签到 ,获得积分10
15秒前
ljq发布了新的文献求助10
15秒前
ding应助hhh采纳,获得10
16秒前
整齐的大开应助wallonce采纳,获得10
17秒前
17秒前
18秒前
感谢wangtingyu转发科研通微信,获得积分50
18秒前
平常安双发布了新的文献求助10
21秒前
22秒前
感谢只只呀转发科研通微信,获得积分50
24秒前
田様应助wanci采纳,获得10
24秒前
苗苗043发布了新的文献求助10
26秒前
27秒前
迅速的小土豆完成签到,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304540
求助须知:如何正确求助?哪些是违规求助? 2938522
关于积分的说明 8489066
捐赠科研通 2613005
什么是DOI,文献DOI怎么找? 1427058
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647465