埃洛石
天然橡胶
材料科学
结晶
复合材料
尿素
极限抗拉强度
傅里叶变换红外光谱
模数
纳米复合材料
化学工程
化学
有机化学
工程类
作者
Indra Surya,Kamaruddin Waesateh,Sitisaiyidah Saiwari,Hanafi Ismail,Nadras Othman,Nabil Hayeemasae
出处
期刊:Polymers
[MDPI AG]
日期:2021-09-11
卷期号:13 (18): 3068-3068
被引量:11
标识
DOI:10.3390/polym13183068
摘要
Halloysite nanotubes (HNTs) are naturally occurring tubular clay made of aluminosilicate sheets rolled several times. HNT has been used to reinforce many rubbers. However, the narrow diameter of this configuration causes HNT to have poor interfacial contact with the rubber matrix. Therefore, increasing the distance between layers could improve interfacial contact with the matrix. In this work, Epoxidized Natural Rubber (ENR)/HNT was the focus. The HNT layer distance was successfully increased by a urea-mechanochemical process. Attachment of urea onto HNT was verified by FTIR, where new peaks appeared around 3505 cm−1 and 3396 cm−1, corresponding to urea’s functionalities. The intercalation of urea to the distance gallery of HNT was revealed by XRD. It was also found that the use of urea-treated HNT improved the modulus, tensile strength, and tear strength of the composites. This was clearly responsible for interactions between ENR and urea-treated HNT. It was further verified by observing the Payne effect. The value of the Payne effect was found to be reduced at 62.38% after using urea for treatment. As for the strain-induced crystallization (SIC) of the composites, the stress–strain curves correlated well with the results from synchrotron wide-angle X-ray scattering.
科研通智能强力驱动
Strongly Powered by AbleSci AI