Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China

灵敏度(控制系统) 水流 校准 水土评价工具 SWAT模型 计算机科学 数学优化 数学 统计 土壤科学 环境科学 分水岭 工程类 流域 机器学习 地图学 地理 电子工程
作者
Mei Li,Zhenhua Di,Qingyun Duan
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:603: 126896-126896 被引量:42
标识
DOI:10.1016/j.jhydrol.2021.126896
摘要

Parameter optimization is an essential step in hydrological simulations, especially for solving practical problems. However, parameter optimization is usually intractable for complex models with a large number of parameters. In this study, a parameter optimization system based on Sensitive Parameter Combinations (SPCs) was developed, which comprised four parameter sensitivity analysis (SA) methods and a sensitive parameter optimization method. In particular, parameter SA was used to screen out the relatively sensitive parameters with significant impacts on the model output, and instead of using All Parameter Combinations (APCs), the SPCs were optimized with a global optimization method. This system was applied to the Soil and Water Assessment Tool (SWAT) model for daily streamflow simulation and monthly evaluation in four watersheds of China. The results showed that no more than 10 sensitive parameters were identified from 27 adjustable parameters for each watershed. In particular, four parameters (CN2, SOL_K, ALPHA_BNK, and SLSUBBSN) were relatively sensitive in all watersheds. Compared with optimizing APCs, despite the number of parameters was reduced by almost 2/3 in the optimization of SPCs, the accuracy was still very close (the maximum Nash–Sutcliffe coefficient (NSE) difference was 0.024 and the minimum difference was 0.002) and the optimization speed was doubled. In the comparison of monthly streamflow optimization, the SPCs were in good agreement with the APCs and had an obvious improvement for the default simulation. The NSE values of the SPCs optimization were greater than 0.88 during the calibration period in all watersheds and greater than 0.83 during the validation period in three watersheds. These findings indicate that optimizing the sensitivity parameters can greatly reduce the computational costs of SWAT streamflow simulations while ensuring their accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到,获得积分10
刚刚
刚刚
2秒前
xuan发布了新的文献求助10
2秒前
2秒前
orixero应助顺心的书包采纳,获得10
3秒前
Titanium完成签到,获得积分10
3秒前
lgh发布了新的文献求助10
3秒前
4秒前
4秒前
1518完成签到,获得积分10
4秒前
5秒前
sx应助zxvcbnm采纳,获得10
5秒前
6秒前
香蕉觅云应助昔我依依采纳,获得10
6秒前
6秒前
ddd完成签到,获得积分10
7秒前
huapeng完成签到,获得积分10
7秒前
1518发布了新的文献求助10
7秒前
九月发布了新的文献求助10
7秒前
杳鸢应助Titanium采纳,获得30
8秒前
sunw发布了新的文献求助10
8秒前
llg发布了新的文献求助10
8秒前
脑洞疼应助jimmy采纳,获得10
8秒前
酱紫完成签到,获得积分10
9秒前
Gin完成签到 ,获得积分10
9秒前
大模型应助111采纳,获得10
9秒前
Celeste完成签到,获得积分10
10秒前
机灵青筠完成签到,获得积分10
10秒前
xuxiaoyan发布了新的文献求助10
10秒前
甜甜元绿发布了新的文献求助10
11秒前
李爱国应助爱听歌的忆翠采纳,获得10
12秒前
木村拓哉发布了新的文献求助10
13秒前
TORGO完成签到 ,获得积分10
13秒前
李爱国应助慢慢采纳,获得10
14秒前
jonghuang发布了新的文献求助10
14秒前
可爱的函函应助llg采纳,获得10
14秒前
康桥完成签到,获得积分10
15秒前
Ice_zhao完成签到,获得积分10
16秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905