Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China

灵敏度(控制系统) 水流 校准 水土评价工具 SWAT模型 计算机科学 数学优化 数学 统计 土壤科学 环境科学 分水岭 工程类 流域 地图学 电子工程 地理 机器学习
作者
Mei Li,Zhenhua Di,Qingyun Duan
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:603: 126896-126896 被引量:42
标识
DOI:10.1016/j.jhydrol.2021.126896
摘要

Parameter optimization is an essential step in hydrological simulations, especially for solving practical problems. However, parameter optimization is usually intractable for complex models with a large number of parameters. In this study, a parameter optimization system based on Sensitive Parameter Combinations (SPCs) was developed, which comprised four parameter sensitivity analysis (SA) methods and a sensitive parameter optimization method. In particular, parameter SA was used to screen out the relatively sensitive parameters with significant impacts on the model output, and instead of using All Parameter Combinations (APCs), the SPCs were optimized with a global optimization method. This system was applied to the Soil and Water Assessment Tool (SWAT) model for daily streamflow simulation and monthly evaluation in four watersheds of China. The results showed that no more than 10 sensitive parameters were identified from 27 adjustable parameters for each watershed. In particular, four parameters (CN2, SOL_K, ALPHA_BNK, and SLSUBBSN) were relatively sensitive in all watersheds. Compared with optimizing APCs, despite the number of parameters was reduced by almost 2/3 in the optimization of SPCs, the accuracy was still very close (the maximum Nash–Sutcliffe coefficient (NSE) difference was 0.024 and the minimum difference was 0.002) and the optimization speed was doubled. In the comparison of monthly streamflow optimization, the SPCs were in good agreement with the APCs and had an obvious improvement for the default simulation. The NSE values of the SPCs optimization were greater than 0.88 during the calibration period in all watersheds and greater than 0.83 during the validation period in three watersheds. These findings indicate that optimizing the sensitivity parameters can greatly reduce the computational costs of SWAT streamflow simulations while ensuring their accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mx应助北极星采纳,获得20
刚刚
爱科研的罗罗完成签到,获得积分10
1秒前
AGuang应助ED采纳,获得200
1秒前
豪士赋完成签到,获得积分10
2秒前
杨小黑发布了新的文献求助10
2秒前
法芙娜发布了新的文献求助10
2秒前
三七完成签到,获得积分10
4秒前
4秒前
judy891zhu完成签到,获得积分10
4秒前
5秒前
5秒前
自由正豪完成签到,获得积分10
5秒前
在水一方应助水中鱼采纳,获得10
5秒前
5秒前
脑洞疼应助欣慰宛菡采纳,获得10
6秒前
6秒前
小蘑菇应助xiaoshuai采纳,获得10
6秒前
Ava应助香云采纳,获得10
7秒前
丘比特应助Jane采纳,获得10
7秒前
搜集达人应助小于采纳,获得10
7秒前
beyondjun完成签到,获得积分10
7秒前
7秒前
7秒前
逆流的鱼完成签到 ,获得积分10
8秒前
乐正亦寒完成签到 ,获得积分10
8秒前
dong应助Ogai采纳,获得10
9秒前
Jasper应助市不辣采纳,获得10
9秒前
李健的小迷弟应助zmj采纳,获得10
9秒前
小先生发布了新的文献求助10
10秒前
晓晓完成签到,获得积分10
10秒前
Yuanyuan发布了新的文献求助10
10秒前
beyondjun发布了新的文献求助10
11秒前
YuHang发布了新的文献求助10
11秒前
牛奶发布了新的文献求助10
11秒前
12秒前
清明发布了新的文献求助10
12秒前
13秒前
13秒前
汉堡包应助没烦恼小婷采纳,获得10
13秒前
领导范儿应助晓晓采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352