Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China

灵敏度(控制系统) 水流 校准 水土评价工具 SWAT模型 计算机科学 数学优化 数学 统计 土壤科学 环境科学 分水岭 工程类 流域 机器学习 地图学 地理 电子工程
作者
Mei Li,Zhenhua Di,Qingyun Duan
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:603: 126896-126896 被引量:42
标识
DOI:10.1016/j.jhydrol.2021.126896
摘要

Parameter optimization is an essential step in hydrological simulations, especially for solving practical problems. However, parameter optimization is usually intractable for complex models with a large number of parameters. In this study, a parameter optimization system based on Sensitive Parameter Combinations (SPCs) was developed, which comprised four parameter sensitivity analysis (SA) methods and a sensitive parameter optimization method. In particular, parameter SA was used to screen out the relatively sensitive parameters with significant impacts on the model output, and instead of using All Parameter Combinations (APCs), the SPCs were optimized with a global optimization method. This system was applied to the Soil and Water Assessment Tool (SWAT) model for daily streamflow simulation and monthly evaluation in four watersheds of China. The results showed that no more than 10 sensitive parameters were identified from 27 adjustable parameters for each watershed. In particular, four parameters (CN2, SOL_K, ALPHA_BNK, and SLSUBBSN) were relatively sensitive in all watersheds. Compared with optimizing APCs, despite the number of parameters was reduced by almost 2/3 in the optimization of SPCs, the accuracy was still very close (the maximum Nash–Sutcliffe coefficient (NSE) difference was 0.024 and the minimum difference was 0.002) and the optimization speed was doubled. In the comparison of monthly streamflow optimization, the SPCs were in good agreement with the APCs and had an obvious improvement for the default simulation. The NSE values of the SPCs optimization were greater than 0.88 during the calibration period in all watersheds and greater than 0.83 during the validation period in three watersheds. These findings indicate that optimizing the sensitivity parameters can greatly reduce the computational costs of SWAT streamflow simulations while ensuring their accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
1秒前
一日不看书智商输给猪完成签到,获得积分10
1秒前
liu123479发布了新的文献求助20
1秒前
小蘑菇应助优秀的枫采纳,获得10
1秒前
Ll发布了新的文献求助10
2秒前
2秒前
SS发布了新的文献求助10
2秒前
workwork发布了新的文献求助10
2秒前
愉快的鞯发布了新的文献求助10
2秒前
zcbb完成签到,获得积分10
3秒前
开朗的西兰花完成签到,获得积分20
3秒前
gffh完成签到,获得积分10
3秒前
含蓄的鹤完成签到 ,获得积分10
4秒前
4秒前
积极的新柔完成签到,获得积分10
4秒前
5秒前
蓝莓松饼发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
Hello应助韭黄采纳,获得10
6秒前
Akim应助HopeStar采纳,获得10
6秒前
7秒前
润润轩轩发布了新的文献求助10
7秒前
7秒前
7秒前
彼岸花完成签到 ,获得积分10
7秒前
科研小兔子完成签到,获得积分10
7秒前
sfw发布了新的文献求助10
7秒前
Zn应助梦鱼采纳,获得10
8秒前
瓦尔迪完成签到,获得积分10
8秒前
jennyyu发布了新的文献求助10
8秒前
灯灯完成签到,获得积分10
9秒前
大白天的飙摩的完成签到,获得积分10
9秒前
沉静的万天完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759