A novel probabilistic regression model for electrical peak demand estimate of commercial and manufacturing buildings

概率逻辑 回归分析 回归 统计模型 计量经济学 线性回归 统计 工业工程 工程类 计算机科学 环境科学 数学
作者
Saman Taheri,Ali Razban
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:77: 103544-103544 被引量:3
标识
DOI:10.1016/j.scs.2021.103544
摘要

Due to the high cost of electricity in commercial and industrial sectors, demand forecast models have gained increasing attention. However, there are two unresolved issues: (1) Models are not adaptable when exposed to previously unknown data (2) The value of regression methods vs. state-of-the-art machine learning models has not been made apparent before. This study’s goal is to develop probabilistic demand estimation models. We propose a probabilistic Bayesian regression framework that can not only estimate future demands with high accuracy but also be updated once new information is available. By applying the proposed algorithm to two real-world case studies (commercial and manufacturing), we show a 40.3% and 30.8% improvement in terms of mean absolute error for the two cases. Moreover, the proposed technique outperforms powerful machine learning approaches, including support vector machine by 10.39%, random forest by 6.17%, and multilayer perceptron by 9.14% in terms of mean absolute percentage error. • A novel probabilistic electricity demand forecasting approach is introduced. • Bayesian probability framework is incorporated. • The demand forecasting regression is compared with machine learning algorithms. • The higher capability of the proposed approach is corroborated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助幽灵采纳,获得10
刚刚
Leo发布了新的文献求助10
刚刚
1秒前
领导范儿应助汪爷爷采纳,获得10
2秒前
3秒前
酱紫发布了新的文献求助10
3秒前
辇道增七发布了新的文献求助10
3秒前
小秋完成签到,获得积分10
4秒前
4秒前
YataMisaki发布了新的文献求助10
4秒前
4秒前
5秒前
jay完成签到,获得积分10
5秒前
Nature_Science完成签到,获得积分10
6秒前
6秒前
YING发布了新的文献求助10
6秒前
积极又槐完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
tomatoli发布了新的文献求助10
9秒前
9秒前
无私绿兰完成签到 ,获得积分10
9秒前
热水养花完成签到 ,获得积分10
10秒前
00完成签到,获得积分10
10秒前
桐桐应助wyr采纳,获得10
11秒前
Ava应助Xu采纳,获得10
11秒前
扶风阁主发布了新的文献求助10
12秒前
12秒前
12秒前
GingerF应助shinn采纳,获得50
13秒前
小杰完成签到 ,获得积分10
13秒前
翊月发布了新的文献求助30
13秒前
香蕉觅云应助单薄紫菜采纳,获得10
13秒前
wanci应助猪猪hero采纳,获得10
14秒前
飞雪之舞完成签到,获得积分10
14秒前
俭朴的半雪完成签到 ,获得积分10
14秒前
14秒前
立军发布了新的文献求助10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993