A coarse-to-fine boundary refinement network for building footprint extraction from remote sensing imagery

计算机科学 足迹 人工智能 边界(拓扑) 分割 卷积神经网络 比例(比率) 计算机视觉 对象(语法) 像素 模式识别(心理学) 遥感 数据挖掘 地理 地图学 数学 数学分析 考古
作者
Haonan Guo,Bo Du,Liangpei Zhang,Xin Su
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:183: 240-252 被引量:83
标识
DOI:10.1016/j.isprsjprs.2021.11.005
摘要

Extracting building footprints from remotely sensed imagery has long been a challenging task and is not yet fully solved. Obstructions from nearby shadows or trees, varying shapes of rooftops, omission of small buildings, and varying scale of buildings hinder existing automated models for extracting sharp building boundaries. Different reasons account for these challenges. In convolutional neural network-based methods, the down-sampling operation loses spatial details of the input images; and small buildings are omitted from the high-level features. The sheltering trees and adjacent objects shadowing may cause errors since semantic information cannot be effectively preserved. Moreover, the insufficient use of multi-scale building features causes blurry edges in the predictions for buildings with complex shapes. To address these challenges, we propose a novel coarse-to-fine boundary refinement network (CBR-Net) that accurately extracts building footprints from remote sensing imagery. Unlike the existing semantic segmentation methods that directly generate building predictions at the highest level, we designed a module that progressively refines the building prediction in a coarse-to-fine manner. In this way, the advantages of both the high-level and low-level features can be retained. We also present a novel boundary refinement (BR) module that enhances the ability of the CBR-Net model to perceive and refine building edges. The BR module refines building prediction by perceiving the direction of each pixel in a remotely sensed optical image to the center of the nearest object to which it might belong. The refined results are used as pseudo labels in a self-supervision process that increases model robustness to noisy labels or obstructions. Experimental results on three public building datasets, including the WHU building dataset, the Massachusetts building dataset, and the Inria aerial image dataset, demonstrate the effectiveness of the proposed method. In evaluation tests, CBR-Net outperformed other state-of-the-art algorithms on the three datasets by maintaining both the continuous entities and accurate boundaries of buildings. The source code of the proposed CBR-Net is available at https://github.com/HaonanGuo/CBRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
359516发布了新的文献求助20
2秒前
星辰大海应助liian7采纳,获得20
2秒前
2秒前
华仔应助zy采纳,获得10
3秒前
等待的乐儿完成签到,获得积分20
3秒前
落寞的玉米完成签到,获得积分20
4秒前
feliciaaa完成签到,获得积分10
4秒前
Majoe完成签到,获得积分10
5秒前
思源应助wlz采纳,获得10
5秒前
潘潘发布了新的文献求助10
6秒前
大鲨鱼发布了新的文献求助10
6秒前
8秒前
大知闲闲关注了科研通微信公众号
8秒前
8秒前
9秒前
10秒前
zsh发布了新的文献求助10
11秒前
Ivory发布了新的文献求助10
12秒前
zy完成签到,获得积分10
14秒前
积极炎彬发布了新的文献求助10
16秒前
sunshine完成签到,获得积分10
16秒前
dahai发布了新的文献求助10
17秒前
畅快的刚完成签到,获得积分10
18秒前
赘婿应助Rui采纳,获得10
19秒前
19秒前
希望天下0贩的0应助zsh采纳,获得10
19秒前
领导范儿应助zsh采纳,获得10
19秒前
Lucas应助zsh采纳,获得30
19秒前
所所应助ff采纳,获得10
20秒前
21秒前
22秒前
Emma施施完成签到,获得积分10
22秒前
我是老大应助科研通管家采纳,获得30
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
iNk应助科研通管家采纳,获得20
22秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559846
求助须知:如何正确求助?哪些是违规求助? 3134300
关于积分的说明 9406386
捐赠科研通 2834333
什么是DOI,文献DOI怎么找? 1558074
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522