地质学
固结仪试验
岩土工程
土壤结构
冲积层
土壤稳定
土壤水分
土壤科学
地貌学
作者
Paul Sargent,Mohamed Rouainia
出处
期刊:Geotechnique
[Thomas Telford Ltd.]
日期:2023-02-01
卷期号:73 (2): 143-164
被引量:2
标识
DOI:10.1680/jgeot.21.00059
摘要
Silty alluvial soils are highly compressible. Deep soil mixing is being increasingly used for remediating such ground conditions, which produces artificially cemented soil columns that gain strength with curing. This study investigated the one-dimensional compression and shear stiffness degradation behaviour of an alluvium in its reconstituted, undisturbed and artificially cemented states. The binder used to stabilise the soil was a low-carbon alkali-activated blast-furnace slag. Oedometer and triaxial data indicated that the nature of the soil structure evolved from being chiefly meta-stable when undisturbed to dominantly stable in its cemented state after 28 days of curing. A new framework has been presented to quantify continuous changes in structure within the alluvium during one-dimensional compression in its undisturbed and cemented states, with respect to its intrinsic properties. This better captured structure degradation during earlier stages of compression compared with previous frameworks and provided insights into defining the limits of meta-stable and stable components of structure within materials of higher strength. A new formulation has been developed for predicting shear stiffness degradation of samples with strain under triaxial conditions. This showed efficiency and good performance in modelling experimental data and was successfully used to quantify initial structure and degradation of structure within the undisturbed and cemented alluvium.
科研通智能强力驱动
Strongly Powered by AbleSci AI