Interpretable video tag recommendation with multimedia deep learning framework

计算机科学 推荐系统 可解释性 上传 卷积神经网络 信息过载 过程(计算) 个性化 情报检索 多媒体 万维网 人工智能 操作系统
作者
Zekun Yang,Zhijie Lin
出处
期刊:Internet Research [Emerald (MCB UP)]
卷期号:32 (2): 518-535 被引量:19
标识
DOI:10.1108/intr-08-2020-0471
摘要

Purpose Tags help promote customer engagement on video-sharing platforms. Video tag recommender systems are artificial intelligence-enabled frameworks that strive for recommending precise tags for videos. Extant video tag recommender systems are uninterpretable, which leads to distrust of the recommendation outcome, hesitation in tag adoption and difficulty in the system debugging process. This study aims at constructing an interpretable and novel video tag recommender system to assist video-sharing platform users in tagging their newly uploaded videos. Design/methodology/approach The proposed interpretable video tag recommender system is a multimedia deep learning framework composed of convolutional neural networks (CNNs), which receives texts and images as inputs. The interpretability of the proposed system is realized through layer-wise relevance propagation. Findings The case study and user study demonstrate that the proposed interpretable multimedia CNN model could effectively explain its recommended tag to users by highlighting keywords and key patches that contribute the most to the recommended tag. Moreover, the proposed model achieves an improved recommendation performance by outperforming state-of-the-art models. Practical implications The interpretability of the proposed recommender system makes its decision process more transparent, builds users’ trust in the recommender systems and prompts users to adopt the recommended tags. Through labeling videos with human-understandable and accurate tags, the exposure of videos to their target audiences would increase, which enhances information technology (IT) adoption, customer engagement, value co-creation and precision marketing on the video-sharing platform. Originality/value The proposed model is not only the first explainable video tag recommender system but also the first explainable multimedia tag recommender system to the best of our knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Leexxxhaoo完成签到,获得积分10
1秒前
han发布了新的文献求助10
1秒前
Stroeve完成签到,获得积分10
2秒前
2秒前
SciGPT应助wali采纳,获得10
3秒前
jiexu发布了新的文献求助10
4秒前
嗯哼应助lilili采纳,获得20
5秒前
酷酷薯片发布了新的文献求助10
7秒前
8秒前
等等完成签到,获得积分10
8秒前
9秒前
9秒前
thinking发布了新的文献求助10
11秒前
zhou国兵发布了新的文献求助10
12秒前
dfuggh发布了新的文献求助10
13秒前
anwen发布了新的文献求助10
13秒前
Oveja发布了新的文献求助10
15秒前
17秒前
5度转角应助学霸宇大王采纳,获得10
17秒前
18秒前
科研通AI2S应助ark861023采纳,获得10
19秒前
orixero应助调皮的易槐采纳,获得10
19秒前
VDC发布了新的文献求助10
21秒前
酷波er应助lgx采纳,获得10
22秒前
调皮蛋完成签到,获得积分10
22秒前
22秒前
Sera发布了新的文献求助10
22秒前
23秒前
wali发布了新的文献求助10
24秒前
masterchen完成签到,获得积分10
24秒前
流川枫完成签到,获得积分10
25秒前
思辰。发布了新的文献求助20
26秒前
黑妖发布了新的文献求助10
27秒前
27秒前
斯文的道罡完成签到,获得积分10
31秒前
doubleshake发布了新的文献求助10
32秒前
petrichor应助科研通管家采纳,获得10
32秒前
李爱国应助科研通管家采纳,获得10
32秒前
杳鸢应助科研通管家采纳,获得200
32秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
Manufacturing Consent: Changes in the Labor Process under Monopoly Capitalism 500
The Politics of Production: Factory Regimes under Capitalism and Socialism 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382980
求助须知:如何正确求助?哪些是违规求助? 2997340
关于积分的说明 8774389
捐赠科研通 2682906
什么是DOI,文献DOI怎么找? 1469353
科研通“疑难数据库(出版商)”最低求助积分说明 679368
邀请新用户注册赠送积分活动 671609