亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sustainability of Healthcare Data Analysis IoT-based Systems using Deep Federated Learning

物联网 云计算 联合学习 大数据 无线传感器网络 无线
作者
Haya Elayan,Moayad Aloqaily,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2021.3103635
摘要

Due to recent privacy trends, and the increase in data breaches in various industries, it has become imperative to adopt new technologies that support data privacy, maintain accuracy, and ensure sustainability at the same time. The healthcare industry is one of the most vulnerable sectors to cyber-attacks and data breaches as health data is highly sensitive and distributed in nature. The use of IoT devices with machine learning models to monitor health status has made the challenge more challenging, as it increases the distribution of health data and adds a decentralized structure to healthcare systems. A new privacy-preserving technology, namely, federated learning, is promising for such a challenge as implementing solutions that integrate federated learning with deep learning, for healthcare applications that rely on IoT, provides several benefits by mainly preserving data privacy, building robust and high accuracy models, and dealing with the decentralized structure, thus achieving sustainability. This article proposes a Deep Federated Learning framework for healthcare data monitoring and analysis using IoT devices. Moreover, it proposes a federated learning algorithm that addresses the local training data acquisition process. Furthermore, it presents an experiment to detect skin diseases using the proposed framework. The extensive results collected show that the deep federated learning models can preserve data privacy without sharing it, maintain the decentralized structure of the system made by IoT devices, improve the area under the curve (AUC) of the model to reach 97%, and reduce the operational costs for service providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通科研完成签到 ,获得积分10
28秒前
35秒前
DrleedsG完成签到,获得积分10
1分钟前
DrleedsG发布了新的文献求助10
1分钟前
1分钟前
1分钟前
liner完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
星宫韩立完成签到 ,获得积分10
2分钟前
4分钟前
4分钟前
4分钟前
4分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
锦鲤完成签到 ,获得积分10
6分钟前
6分钟前
Later完成签到,获得积分20
6分钟前
7分钟前
景泰蓝完成签到,获得积分10
8分钟前
景泰蓝发布了新的文献求助10
8分钟前
8分钟前
9分钟前
9分钟前
鱼块发布了新的文献求助10
9分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
赘婿应助鱼块采纳,获得10
9分钟前
一禅完成签到 ,获得积分10
10分钟前
lanbing802完成签到,获得积分10
11分钟前
Jasper应助zjl123采纳,获得10
11分钟前
11分钟前
一杯六一完成签到,获得积分10
11分钟前
13分钟前
zjl123发布了新的文献求助10
13分钟前
gszy1975发布了新的文献求助10
13分钟前
qiuxuan100发布了新的文献求助10
14分钟前
15分钟前
16分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005