An investment analysis for China's sustainable development based on inverse data envelopment analysis

可持续发展 投资(军事) 数据包络分析 经济 中国 投资策略 环境经济学 业务 自然资源经济学 微观经济学 利润(经济学) 政治学 数学 政治 数学优化 法学
作者
Lei Chen,Ying‐Ming Wang,Fujun Lai,Feng Feng
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:142: 1638-1649 被引量:69
标识
DOI:10.1016/j.jclepro.2016.11.129
摘要

In the face of environmental degradation, sustainable development has become a common goal across the globe. Making a scientifically based investment scheme is of great significance to promote the sustainable development of China's economy. However, there is scarce research related to such an investment scheme of sustainable development. This paper proposes a new inverse data envelopment analysis method with undesirable outputs to make several scientifically based investment schemes from different perspectives, namely, the natural, regulation, and optimal perspectives. By this method, decision makers can scientifically forecast the specific amount of investment based on their actual sustainable development objectives, which is conducive for reducing the blindness of investment in the future. In addition, a new ideal perspective is defined to guide a definite direction for improving the level of sustainable development. Combined with the gray forecasting model GM(1,1), the methods proposed by this paper were then applied to analyze the investment problem for China's sustainable development during the 2015–2024 period. The results show that: the unbalanced distribution of labor investment and the excessive investment in capital and energy are serious barriers to China's sustainable development in the short term; and in the long term, the demand for investment in labor and capital will continue to increase along with a lower demand for energy investment, and that appropriately strengthening environmental regulations will not affect the overall demand for investment. Meanwhile, improvement directions for improving China's sustainable development are discussed, and the results show that most of developing and undeveloped regions in China have great potential for improvement. Finally, some suggestions are proposed in order to create better conditions for China's sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想要毕业发布了新的文献求助30
刚刚
wanci应助Sunny采纳,获得10
刚刚
e任思完成签到 ,获得积分10
1秒前
ZYC完成签到 ,获得积分10
1秒前
2秒前
科研微微完成签到,获得积分10
2秒前
风滚草完成签到,获得积分10
2秒前
英姑应助阿卡宁采纳,获得20
4秒前
SC完成签到 ,获得积分10
4秒前
Orange应助BK2008采纳,获得10
5秒前
nianhua完成签到,获得积分10
5秒前
wzy发布了新的文献求助10
6秒前
6秒前
科研微微发布了新的文献求助20
6秒前
xiahou完成签到,获得积分10
6秒前
7秒前
xiongyh10完成签到,获得积分10
7秒前
ZHANES完成签到,获得积分10
7秒前
NexusExplorer应助yule采纳,获得10
7秒前
paopao完成签到,获得积分10
7秒前
科研通AI2S应助fdvs采纳,获得10
8秒前
8秒前
9秒前
9秒前
羽6完成签到,获得积分10
9秒前
sumugeng完成签到,获得积分10
9秒前
漂亮的素完成签到,获得积分10
9秒前
10秒前
HEIKU应助han采纳,获得10
11秒前
12秒前
xiangliang完成签到,获得积分10
12秒前
领导范儿应助suo采纳,获得10
12秒前
千亦完成签到,获得积分10
12秒前
13秒前
14秒前
顾长生发布了新的文献求助10
14秒前
酸菜发布了新的文献求助10
15秒前
开朗的诗槐完成签到 ,获得积分10
16秒前
16秒前
期刊完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151195
求助须知:如何正确求助?哪些是违规求助? 2802651
关于积分的说明 7849434
捐赠科研通 2460087
什么是DOI,文献DOI怎么找? 1309478
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601760